The Role of Protein and Fat Intake on Insulin Therapy in Glycaemic Control of Paediatric Type 1 Diabetes: A Systematic Review and Research Gaps
Abstract
:1. Introduction
2. Background
2.1. Epidemiology
2.2. Treatment of T1DM
2.2.1. Insulin and Monitoring
2.2.2. Nutrition
2.3. Physiology of Dietary Fat and Protein on Blood Glucose Levels
3. Methods
Authors and Year | Sample Size | Average Age ± SD in Years (Range of Age) | BMI z-Score | HbA1c (% or mmol/mol) | Meal Type (HF/HP/Mixed Meal) | Composition of the Test Meals (Carbohydrates/Fat/Protein in g) | Measurement Methods/Duration of Observation | Insulin Regimen (Absolute/%) | Algorithm for Calculating Bolus Insulin |
---|---|---|---|---|---|---|---|---|---|
Paediatric Study Population Only | |||||||||
Seckold R et al., 2019 [19] | 22 | 4.9 ± 1.3(2.5 to 6.6) | z-Score 0.8 ± 0.9 | 6.4% ± 0.9% 47 ± 10 mmol/mol | retrospective 3-day meal observation via questionnaire | CSII 41%, MDI 59% | CHC | ||
Katz ML et al., 2014 [20] | 252 | 13.2 ± 2.8 (8 to18) | z-Score 0.7 ± 0.8 | 8.51% ± 1.3% | retrospective 3-day meal observation via questionnaire | CSII 69%, MDI 31% | no data on specific algorithms | ||
Smart CE et al., 2013 [21] | 33 | 12.2 ± 2.5 (8 to 17) | z-Score 0.6 ± 0.8 | 7.2% ± 0.8% | LFLP//LFHP//HFLP//HFHP | LFLP 30.3 g/4 g/5.3 g//LFHP 30 g/3.9/40 g//HFLP 30.3 g/35 g/5.3 g//HFHP 29.8 g/35.2 g/40 g | CGM/5 h | CSII n = 27, MDI n = 6 | CHC |
van der Hoogt M et al., 2017 [27] | 22 | 10.4 ± 4 (4 to 17) | z-Score −1–+3 | 8.23% ± 0.82% | LFLP//HFHP | individually calculated total daily energy requirement using age/weight/gender: LFLP 60%/25%/15%//HFHP 40%/35%25% LFLP 40.2 g fat (±9.08)/7.72 (±2.25)/10.6 (±3.37) 10.6//HFHP 40.2 (±9.08)/15.3 (±4.03)/26.6 (±6.72) | CGM + cap/10 h | CSII | CHC |
Abdou M et al., 2021 [28] | 51 | 11.24 ± 2.41 (6 to 18) | no data | 8.35% ± 0.99% | mixed meal//HP//HF | 25% daily caloric intake//HP (+125 kcal Protein)//HF (+125 kcal Protein) | cap/5 h | MDI | CHC |
Kaya N et al., 2020 [29] | 30 | 16 (16 to 18) | z-Score −0.2 | 7.6% (6–11.2%) | mixed meal//HP//HFHPa//HFHPb(mit Pankowska) | meals were age adjusted: 25% of the total daily energy requirement—mixed meal 70 g/17 g/26 g//HP 70 g/26 g/36 g//HFHPa 70 g/30 g/36 g//HFHPb 70 g/30 g/36 g | cap/4 h | MDI | CHC and Pankowska Equation |
Piechowiak K et al., 2017 [30] | 58 | 14.7 ± 2.2 (10.5 to 18.0) | z-Score 0.3 ± 1.1 (BMI 21.5 ± 3.6) | 8.3% ± 11% 67.2 ± 12 mmol/mol | LFHP | 30 g/5 g/36 g | CGM + cap/3 h | CSII | CHC and Pankowska Equation |
Lopez PE et al., 2018 [10] | 33 | 12.3 ± 3.6 (7 to 17) | z-Score 0.2 ± 1.0 | 7.3% ± 0.7% | HF//HP | 47 g/27 g/16 g//48 g/13 g/34 g | CGM/5 h | CSII | CHC and Pankowska Equation and Food Index |
Pankowska E et al., 2012 [31] | 24 | 12.7 to 17.9 | z-Score 0.7 (−1.1–0.98) | 7.5% ± 1.3% (5.1–9.9%) | mixed meal (Pizza) | 46.8 g/33.1 g/25.4 g | cap/6 h | CSII | CHC and Pankowska Equation |
Authors and Year | Sample Size | Average Age ± SD in Years (Range of Age) | BMI z-Score | HbA1c (% or mmol/mol) | Meal Type (HF/HP/Mixed Meal) | Composition of the Test Meals (Carbohydrates/Fat/Protein in g) | Measurement Methods/Duration of Observation | Insulin Regimen (Absolute/%) | Algorithm for Calculating Bolus Insulin |
---|---|---|---|---|---|---|---|---|---|
Mixed Study Population (Children And Adults) | |||||||||
Neu A et al., 2015 [32] | 15 | 16.8 ± 2.9 | BMI 21.1 ± 2.19 | 6.9% ± 0.8 | mixed meal//HFHP | 70 g/19 g/28 g//70 g/52 g/110 g | CGM/12 h | CSII 6, MDI 9 | CHC |
Evans M et al., 2019 [33] | 11 | 16.5 ± 2.7 (12 to 21) | z-Score 0.4 ± 0.6 | 6.9% ± 0.8 52 ± 8.7 mmol/mol | HP//LP | 31 g/8 g/60 g//31 g/8 g/5 g | Insulin clamp variation, cap/5 h | Intravenous Insulin infusion to maintain euglycaemia | Pankowska Equation |
Lopez PE et al., 2017 [34] | 19 | 12.9 ± 6.7 (6.2 to 19.6) | z- Score 0.4 ± 0.7 | 6.9% ± 0.6 | HFHP | 30 g/35 g/40 g | CGM/5 h | CSII | CHC |
Kordonouri O et al., 2012 [35] | 42 | 12.3 ± 3.6 (6 to 21) | no data | no data | mixed meal (Pizza) | Pizza—50% carbohydrate, 34% fat, 16% protein—corresponding to 33%of age-adjusted daily energy requirement | cap/6 h | CSII, normal and dual-wave bolus | CHC and Pankowska Equation |
Paterson MA et al., 2016 [25] | 27 | 21.7 ± 11.7 (7 to 40) | BMI 21 ± 3.1 | 6.9% ± 0.8 52 ± 9.1 mmol/mol | 2× carbohydrates only//LP to HP | 10 g/0 g/0 g//20 g/0 g/0 g//0 g/0 g/0 g//0 g/0 g/12.5 g//0 g/0 g/25 g //0 g/0 g/50 g//0 g/0 g/75 g//0 g/0 g/100 g | CGM/5 h | CSII 14, MDI 12 | CHC |
Schweizer R et al., 2020 [36] | 16 | 18.2 ± 2.8 (15.2 to 24) | no data | 7.15% (6.2–8.3%) | mixed meal//HFHP | 70 g/19 g/28 g//57 g/39 g/92 g | CGM/12 h | CSII 10, MDI 6 | CHC +20% and +40% extra insulin for fat and protein |
Smith TA et al., 2021 [37] | 24 | 19 ± 9 (9 to 35) | BMI 20.9 (children) BMI 24.6 (adults) | 6.7% ± 0.7 49 ± 8 mmol/mol | HFHP | 30 g/40 g/50 g | CGM/5 h | MDI | CHC |
Paterson M et al., 2020 [38] | 26 | 21.7 ± 8.14 (8 to 40) | BMI 22 ± 3.6 | 6.9% ± 0.6 52 ± 9.1 mmol/mol | LFHP | 30 g/<1 g/50 g | CGM/4 h | CSII | CHCand Pankowska Equation |
Smith TA et al., 2021 [39] | 27 | 15 ± 4 (10 to 23) | BMI 21.3 (children) BMI 24.6 (adults) | 7.0% ± 0.7 53 ± 7 mmol/mol | HFHP | 30 g/40 g/50 g | CGM/5 h | CSII | CHC |
Paterson MA et al., 2017 [40] | 27 | 20.7+/−10.3 (10 to 40) | BMI 22 ± 3.6 | 7.1% ± 0.95 54 ± 3.1 mmol/mol | LFLP//LFHP | 30 g/0.4 g/0–12.5–25–50–75 g | CGM/4 h | CSII 16, MDI 11 | CHC |
De Palma A. et al., 2011 [41] | 38 | 6 to 19 | BMI 21.9 ± 4.3 | 7.66% ± 0.81 | mixed meal (Pizza) | carbohydrate 60%, fat 23%, protein 16%; 35% of total daily caloric intake | cap/6 h | CSII | CHC |
4. Results
4.1. Effect of Macronutrients Fat and Protein on Glycaemic Control and Therapy
4.1.1. Protein as Dominant Macronutrient
Glycaemic Response
Amount of Protein Studied
Insulin Therapy
4.1.2. Fat as Predominant Macronutrient
Glycaemic Response
Amount of Fat Studied
Insulin Therapy
4.1.3. Combination of High Fat and High Protein in Meals
Glycaemic Response
Amount of High Fat and High Protein Studied
Insulin Therapy
4.1.4. Meal Adjustment According to Age and/or Weight
4.2. Insulin Therapy
4.2.1. Counting of Macronutrients: CHC vs. CFP (Carbohydrate-Fat-Protein)
4.2.2. Amount of Bolus Insulin for Covering Fat and/or Protein
4.2.3. Ways of Administering Insulin (MDI vs. CSII)
4.2.4. Choice of Bolus Type in CSII and MDI
4.2.5. Interindividual Variation of Insulin Therapy
5. Discussion
5.1. Effect of Fat and Protein on Glucose Response
5.1.1. Fat
5.1.2. Protein
5.1.3. Mixed Meals (Fat and Protein Combined)
5.2. Special Issues: Insulin Resistance—The Role of Puberty and Duration of Illness
5.3. The Role of Diets, Daytime of Consumption and Order of Nutrients
5.4. Technical Aspects—Role of MDI, CSII & CGM
5.5. Current Approaches to Estimate Bolus Insulin
6. Gaps of Research & Outlook
6.1. Study Design
6.1.1. Gaps
6.1.2. Future Needs
6.2. Nutritional Key Points
6.2.1. Gaps
6.2.2. Future Needs
6.3. Monitoring of Glucose Levels
6.4. Administering of Bolus Insulin
6.5. Special Issues
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shukla, A.P.; Andono, J.; Touhamy, S.H.; Casper, A.; Iliescu, R.G.; Mauer, E.; Shan Zhu, Y.; Ludwig, D.S.; Aronne, L.J. Carbohydrate-Last Meal Pattern Lowers Postprandial Glucose and Insulin Excursions in Type 2 Diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000440. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, D.E.; Evans, M.L.; Monsod, T.P.; Rife, F.; Heptulla, R.A.; Tamborlane, W.V.; Sherwin, R.S. The Influence of Insulin on Circulating Ghrelin. Am. J. Physiol. Endocrinol. Metab. 2003, 284, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Shukla, A.P.; Mauer, E.; Igel, L.I.; Truong, W.; Casper, A.; Kumar, R.B.; Saunders, K.H.; Aronne, L.J. Effect of Food Order on Ghrelin Suppression. Diabetes Care 2018, 41, 76–77. [Google Scholar] [CrossRef] [Green Version]
- Smart, C.E.; Annan, F.; Higgins, L.A.; Jelleryd, E.; Lopez, M.; Acerini, C.L. ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional Management in Children and Adolescents with Diabetes. Pediatr. Diabetes 2018, 19, 136–154. [Google Scholar] [CrossRef]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini, F.H.; Ghojazadeh, M. Prevalence and Incidence of Type 1 Diabetes in the World: A Systematic Review and Meta-Analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas. Available online: https://www.diabetesatlas.org (accessed on 2 August 2021).
- Harjutsalo, V.; Sund, R.; Knip, M.; Groop, P.H. Incidence of Type 1 Diabetes in Finland. JAMA 2013, 310, 427–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phelan, H.; Clapin, H.; Bruns, L.; Cameron, F.J.; Cotterill, A.M.; Couper, J.J.; Davis, E.A.; Donaghue, K.C.; Jefferies, C.A.; King, B.R.; et al. The Australasian Diabetes Data Network: First National Audit of Children and Adolescents with Type 1 Diabetes. Med. J. Aust. 2017, 206, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, C.; Volkening, L.K.; Diaz, M.; Laffel, L.M. A Decade of Temporal Trends in Overweight/Obesity in Youth with Type 1 Diabetes after the Diabetes Control and Complications Trial. Pediatr. Diabetes 2015, 16, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, P.E.; Evans, M.; King, B.R.; Jones, T.W.; Bell, K.; McElduff, P.; Davis, E.A.; Smart, C.E. A Randomized Comparison of Three Prandial Insulin Dosing Algorithms for Children and Adolescents with Type 1 Diabetes. Diabet. Med. 2018, 35, 1440–1447. [Google Scholar] [CrossRef]
- Pańkowska, E.; Szypowska, A.; Lipka, M.; Szpotańska, M.; Błazik, M.; Groele, L. Application of Novel Dual Wave Meal Bolus and its Impact on Glycated Hemoglobin A1c Level in Children with Type 1 Diabetes. Pediatr. Diabetes 2009, 10, 298–303. [Google Scholar] [CrossRef]
- Danne, T.; Phillip, M.; Buckingham, B.A.; Jarosz-Chobot, P.; Saboo, B.; Urakami, T.; Battelino, T.; Hanas, R.; Codner, E. ISPAD Clinical Practice Consensus Guidelines 2018: Insulin Treatment in Children and Adolescents with Diabetes. Pediatr. Diabetes 2018, 19, 115–135. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurnurkar, S.; Owens, L.; Chalise, S.; Vyas, N. Evaluation of Hemoglobin A1c Before and after Initiation of Continuous Glucose Monitoring in Children with Type 1 Diabetes Mellitus. J. Pediatr. Endocrinol. Metab. 2021, 34, 311–317. [Google Scholar] [CrossRef]
- Beck, R.W.; Connor, C.G.; Mullen, D.M.; Wesley, D.M.; Bergenstal, R.M. The Fallacy of Average: How Using HbA 1c Alone to Assess Glycemic Control Can Be Misleading. Diabetes Care 2017, 40, 994–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olczuk, D.; Ronny Priefer, R. A History of Continuous Glucose Monitors (CGMs) in Self-Monitoring of Diabetes mellitus. Diabetes Metab. Syndr. 2018, 12, 181–187. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Australian Dietary Guidelines. Available online: https://www.eatforhealth.gov.au/guidelines (accessed on 2 August 2021).
- Dewey, K.G.; Beaton, G.; Fjeld, C.; Lönnerdal, B.; Reeds, P. Protein Requirements of Infants and Children. Eur. J. Clin. Nutr. 1996, 50, 119–150. [Google Scholar]
- Seckold, R.; Howley, P.; King, B.R.; Bell, K.; Smith, A.; Smart, C.E. Dietary Intake and Eating Patterns of Young Children with Type 1 Diabetes Achieving Glycemic Targets. BMJ Open Diabetes Res. Care 2019, 7, e000663. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.L.; Mehta, S.; Nansel, T.; Quinn, H.; Lipsky, L.M.; Laffel, L.M. Associations of Nutrient Intake with Glycemic Control in Youth with Type 1 Diabetes: Differences by Insulin Regimen. Diabetes Technol. Ther. 2014, 16, 512–518. [Google Scholar] [CrossRef] [Green Version]
- Smart, C.E.; Evans, M.; O’Connell, S.M.; McElduff, P.; Lopez, P.E.; Jones, T.W.; Davis, E.A.; King, B.R. Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children with Type 1 Diabetes, and the Effect is Additive. Diabetes Care 2013, 36, 3897–3902. [Google Scholar] [CrossRef] [Green Version]
- Paterson, M.A.; Bell, K.J.; O’Connell, S.M.; Smart, C.E.; Shafat, A.; King, B. The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management. Curr. Diabetes Rep. 2015, 15, 61. [Google Scholar] [CrossRef] [Green Version]
- Bell, K.J.; Fio, C.Z.; Twigg, S.; Duke, S.A.; Fulcher, G.; Alexander, K.; McGill, M.; Wong, J.; Brand-Miller, J.; Steil, G.M. Amount and Type of Dietary Fat, Postprandial Glycemia, and Insulin Requirements in Type 1 Diabetes: A Randomized within-Subject Trial. Diabetes Care 2020, 43, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Gannon, M.C.; Nuttall, F.Q. Glucose Appearance Rate Following Protein Ingestion in Normal Subjects. J. Am. Coll. Nutr. 1992, 11, 701–706. [Google Scholar] [CrossRef]
- Paterson, M.A.; Smart, C.E.M.; McElduff, P.; Lopez, P.; Attia, J.; Morbey, C.; King, B.R. Influence of Pure Protein on Postprandial Blood Glucose Levels in Individuals with Type 1 Diabetes mellitus Using Intensive Insulin Therapy. Diabet. Med. 2014, 33, 592–598. [Google Scholar] [CrossRef] [Green Version]
- García-López, J.M.; González-Rodriguez, M.; Pazos-Couselo, M.; Gude, F.; Prieto-Tenreiro, A.; Casanueva, F. Should the Amounts of Fat and Protein Be Taken into Consideration to Calculate the Lunch Prandial Insulin Bolus? Results from a Randomized Crossover Trial. Diabetes Technol. Ther. 2013, 15, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Hoogt, M.; van Dyk, J.C.; Dolman, R.C.; Pieters, M. Protein and Fat Meal Content Increase Insulin Requirement in Children with Type 1 Diabetes-Role of Duration of Diabetes. J. Clin. Transl. Endocrinol. 2017, 10, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Abdou, M.; Hafez, M.H.; Anwar, G.M.; Fahmy, W.A.; Abd Alfattah, N.M.; Salem, R.I.; Arafa, N. Effect of High Protein and Fat diet on Postprandial Blood Glucose Levels in Children and Adolescents with Type 1 Diabetes in Cairo, Egypt. Diabetes Metab. Syndr. 2021, 15, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Kaya, N.; Kurtoğlu, S.; Özel, H.G. Does Meal-Time Insulin Dosing Based on Fat-Protein Counting Give Positive Results in Postprandial Glycaemic Profile after a High Protein-Fat Meal in Adolescents with Type 1 Diabetes: A Randomised Controlled trial. J. Hum. Nutr. Diet. 2020, 33, 396–403. [Google Scholar] [CrossRef]
- Piechowiak, K.; Dżygało, K.; Szypowska, A. The Additional Dose of Insulin for High-Protein Mixed Meal Provides Better Glycemic Control in Children with Type 1 Diabetes on Insulin Pumps: Randomized Cross-Over Study. Pediatr. Diabetes 2017, 18, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Pańkowska, E.; Błazik, M.; Groele, L. Does the Fat-Protein Meal Increase Postprandial Glucose Level in Type 1 Diabetes Patients on Insulin Pump: The Conclusion of a Randomized Study. Diabetes Technol. Ther. 2012, 14, 16–22. [Google Scholar] [CrossRef]
- Neu, A.; Behret, F.; Braun, R.; Herrlich, S.; Liebrich, F.; Loesch-Binder, M.; Schneider, A.; Schweizer, R. Higher Glucose Concentrations Following Protein-and Fat-Rich Meals-the Tuebingen Grill Study: A Pilot Study in Adolescents with Type 1 Diabetes. Pediatr. Diabetes 2015, 16, 587–591. [Google Scholar] [CrossRef]
- Evans, M.; Smart, C.E.; Paramalingam, N.; Smith, G.J.; Jones, T.W.; King, B.R.; Davis, E.A. Dietary Protein Affects Both the Dose and Pattern of Insulin Delivery Required to Achieve Postprandial Euglycaemia in Type 1 Diabetes: A Randomized Trial. Diabet. Med. 2019, 36, 499–504. [Google Scholar] [CrossRef]
- Lopez, P.E.; Smart, C.E.; McElduff, P.; Foskett, D.C.; Price, D.A.; Paterson, M.A.; King, B.R. Optimizing the Combination Insulin Bolus Split for a High-Fat, High-Protein Meal in Children and Adolescents Using Insulin Pump Therapy. Diabet. Med. 2017, 34, 1380–1384. [Google Scholar] [CrossRef]
- Kordonouri, O.; Hartmann, R.; Remus, K.; Bläsig, S.; Sadeghian, E.; Danne, T. Benefit of Supplementary Fat Plus Protein Counting as Compared with Conventional Carbohydrate Counting for Insulin Bolus Calculation in Children with Pump Therapy. Pediatr. Diabetes 2012, 13, 540–544. [Google Scholar] [CrossRef]
- Schweizer, R.; Herrlich, S.; Lösch-Binder, M.; Glökler, M.; Heimgärtner, M.; Liebrich, F.; Meßner, K.; Muckenhaupt, T.; Schneider, A.; Ziegler, J.; et al. Additional Insulin for Coping with Fat-and Protein-Rich Meals in Adolescents with Type 1 Diabetes: The Protein Unit. Exp. Clin. Endocrinol. Diabetes 2020. online ahead of print. [Google Scholar] [CrossRef]
- Smith, T.A.; Smart, C.E.; Howley, P.P.; Lopez, P.E.; King, B.R. For a High Fat, High Protein Breakfast, Preprandial Administration of 125% of the Insulin Dose Improves Postprandial Glycaemic Excursions in People with Type 1 Diabetes Using Multiple Daily Injections: A Cross-Over Trial. Diabet. Med. 2021, 38, e14512. [Google Scholar]
- Paterson, M.A.; Smart, C.; Howley, P.; Price, D.A.; Foskett, D.C.; King, B.R. High-Protein Meals Require 30% Additional Insulin to Prevent Delayed Postprandial Hyperglycaemia. Diabet. Med. 2020, 37, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.A.; Smart, C.E.; Fuery, M.; Howley, P.P.; Knight, B.A.; Harris, M.; King, B.R. In Children and Young People with Type 1 Diabetes Using Pump Therapy, an Additional 40% of the Insulin Dose for a High-Fat, High-Protein Breakfast Improves Postprandial Glycaemic Excursions: A Cross-Over Trial. Diabet. Med. 2021, 38, e14511. [Google Scholar] [PubMed]
- Paterson, M.A.; Smart, C.E.; Lopez, P.E.; Howley, P.; McElduff, P.; Attia, J.; Morbey, C.; King, B.R. Increasing the Protein Quantity in a Meal Results in Dose-Dependent Effects on Postprandial Glucose Levels in Individuals with Type 1 Diabetes mellitus. Diabet. Med. 2017, 34, 851–854. [Google Scholar] [CrossRef] [PubMed]
- De Palma, A.; Giani, E.; Iafusco, D.; Bosetti, A.; Macedoni, M.; Gazzarri, A.; Spiri, D.; Scaramuzza, A.E.; Zuccotti, G.V. Lowering Postprandial Glycemia in Children with Type 1 Diabetes after Italian Pizza “Margherita” (TyBoDi2 Study). Diabetes Technol. Ther. 2011, 13, 483–487. [Google Scholar] [CrossRef]
- Bell, K.J.; Smart, C.E.; Steil, G.M.; Brand-Miller, J.C.; King, B.; Wolpert, H.A. Impact of Fat, Protein, and Glycemic Index on Postprandial Glucose Control in Type 1 Diabetes: Implications for Intensive Diabetes Management in the continuous Glucose Monitoring Era. Diabetes Care 2015, 38, 1008–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolpert, H.A.; Atakov-Castillo, A.; Smith, S.A.; Steil, G.M. Dietary Fat Acutely Increases Glucose Concentrations and Insulin Requirements in Patients with Type 1 Diabetes: Implications for Carbohydrate-Based Bolus Dose Calculation and Intensive Diabetes Management. Diabetes Care 2013, 36, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.L.; Davidson, M.B. Protein and Fat Effects on Glucose Responses and Insulin Requirements in Subjects with Insulin-Dependent Diabetes mellitus. Am. J. Clin. Nutr. 1993, 58, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Nordt, T.K.; Besenthal, I.; Eggstein, M.; Jakober, B. Influence of Breakfasts with Different Nutrient Contents on Glucose, C peptide, Insulin, Glucagon, Triglycerides, and GIP in Non-Insulin-Dependent Diabetics. Am. J. Clin. Nutr. 1991, 53, 155–160. [Google Scholar] [CrossRef]
- Tascini, G.; Berioli, M.G.; Cerquiglini, L.; Santi, E.; Mancini, G.; Rogari, F.; Toni, G.; Esposito, S. Carbohydrate Counting in Children and Adolescents with Type 1 Diabetes. Nutrients 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krzymien, J.; Ladyzynski, P. Insulin in Type 1 and Type 2 Diabetes-Should the Dose of Insulin Before a Meal be Based on Glycemia or Meal Content? Nutrients 2019, 11, 607. [Google Scholar] [CrossRef] [Green Version]
- Paterson, M.A.; King, B.R.; Smart, C.; Smith, T.; Rafferty, J.; Lopez, P.E. Impact of Dietary Protein on Postprandial Glycaemic Control and Insulin Requirements in Type 1 Diabetes: A Systematic Review. Diabet. Med. 2019, 36, 1585–1599. [Google Scholar] [CrossRef] [PubMed]
- Metwally, M.; Cheung, T.O.; Smith, R.; Bell, K.J. Insulin Pump Dosing Strategies for Meals Varying in Fat, Protein or Glycaemic Index or Grazing-Style Meals in Type 1 Diabetes: A Systematic Review. Diabetes Res. Clin. Pract. 2021, 172, 108516. [Google Scholar] [CrossRef]
- Smart, C.; King, B.R.; Lopez, P.E. Insulin Dosing for Fat and Protein: Is it Time? Diabetes Care 2020, 43, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Błazik, M.; Pańkowska, E. The Effect of Bolus and Food Calculator Diabetics on Glucose Variability in Children with Type 1 Diabetes Treated with Insulin Pump: The Results of RCT. Pediatr. Diabetes 2012, 13, 534–539. [Google Scholar] [CrossRef]
- Lodefalk, M.; Aman, J.; Bang, P. Effects of Fat Supplementation on Glycaemic Response and Gastric Emptying in Adolescents with Type 1 Diabetes. Diabet. Med. 2008, 25, 1030–1035. [Google Scholar] [CrossRef]
- American Diabetes Association. Lifestyle Management: Standards of Medical Care in Diabetes 2017. Diabetes Care 2017, 40, 33–43. [Google Scholar]
- Gentilcore, D.; Chaikomin, R.; Jones, K.L.; Russo, A.; Feinle-Bisset, C.; Wishart, J.M.; Rayner, C.K.; Horowitz, M. Effects of Fat on Gastric Emptying of and the Glycemic, Insulin, and Incretin Responses to a Carbohydrate Meal in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2062–2067. [Google Scholar] [CrossRef] [PubMed]
- Danne, T.; Nimri, R.; Battelino, T.; Bergenstal, R.M.; Close, K.L.; DeVries, J.H.; Garg, S.; Heinemann, L.; Hirsch, I.; Amiel, S.A.; et al. International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care 2017, 40, 1631–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furthner, D.; Lukas, A.; Schneider, A.M.; Mörwald, K.; Maruszczak, K.; Gombos, P.; Gomahr, J.; Steigleder-Schweiger, C.; Weghuber, D.; Pixner, T. The Role of Protein and Fat Intake on Insulin Therapy in Glycaemic Control of Paediatric Type 1 Diabetes: A Systematic Review and Research Gaps. Nutrients 2021, 13, 3558. https://doi.org/10.3390/nu13103558
Furthner D, Lukas A, Schneider AM, Mörwald K, Maruszczak K, Gombos P, Gomahr J, Steigleder-Schweiger C, Weghuber D, Pixner T. The Role of Protein and Fat Intake on Insulin Therapy in Glycaemic Control of Paediatric Type 1 Diabetes: A Systematic Review and Research Gaps. Nutrients. 2021; 13(10):3558. https://doi.org/10.3390/nu13103558
Chicago/Turabian StyleFurthner, Dieter, Andreas Lukas, Anna Maria Schneider, Katharina Mörwald, Katharina Maruszczak, Petra Gombos, Julian Gomahr, Claudia Steigleder-Schweiger, Daniel Weghuber, and Thomas Pixner. 2021. "The Role of Protein and Fat Intake on Insulin Therapy in Glycaemic Control of Paediatric Type 1 Diabetes: A Systematic Review and Research Gaps" Nutrients 13, no. 10: 3558. https://doi.org/10.3390/nu13103558
APA StyleFurthner, D., Lukas, A., Schneider, A. M., Mörwald, K., Maruszczak, K., Gombos, P., Gomahr, J., Steigleder-Schweiger, C., Weghuber, D., & Pixner, T. (2021). The Role of Protein and Fat Intake on Insulin Therapy in Glycaemic Control of Paediatric Type 1 Diabetes: A Systematic Review and Research Gaps. Nutrients, 13(10), 3558. https://doi.org/10.3390/nu13103558