Cortical and Subcortical Brain Volumes Partially Mediate the Association between Dietary Composition and Behavioral Disinhibition: A UK Biobank Study
Abstract
:1. Introduction
2. Methods
2.1. Sample
2.2. Behavioral Disinhibition
2.3. Dietary Components
2.4. Structural Brain Measures
2.5. Independent Component Analysis of Structural Brain Measures
2.6. Covariates
2.7. Mediation Analyses
3. Results
3.1. Demographic and Lifestyle Factors
3.2. Multiple Mediation Models
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | Attention-Deficit/Hyperactivity Disorder |
DSM-IV | Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition |
FFQ | Food frequency questionnaire |
MHQ | Mental Health Questionnaire |
MRI | Magnetic Resonance Imaging |
PCA | Principle Component Analysis |
References
- Sharma, L.; Markon, K.E.; Clark, L.A. Toward a theory of distinct types of “impulsive” behaviors: A meta-analysis of self-report and behavioral measures. Psychol. Bull. 2014, 140, 374–408. [Google Scholar] [CrossRef]
- Chamberlain, S.R.; Blackwell, A.D.; Fineberg, N.A.; Robbins, T.W.; Sahakian, B.J. The neuropsychology of obsessive compulsive disorder: The importance of failures in cognitive and behavioral inhibition as candidate endophenotypic markers. Neurosci. Biobehav. Rev. 2005, 29, 399–419. [Google Scholar] [CrossRef] [PubMed]
- Alderson, R.M.; Rapport, M.D.; Kofler, M. Attention-Deficit/Hyperactivity Disorder and Behavioral Inhibition: A Meta-Analytic Review of the Stop-signal Paradigm. J. Abnorm. Child Psychol. 2007, 35, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Kurvits, L.; Martino, D.; Ganos, C. Clinical Features That Evoke the Concept of Disinhibition in Tourette Syndrome. Front. Psychiatry 2020, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Amirian, E.; Baxter, J.; Grigsby, J.; Curran-Everett, D.; Hokanson, J.E.; Bryant, L.L. Executive function (capacity for behavioral self-regulation) and decline predicted mortality in a longitudinal study in Southern Colorado. J. Clin. Epidemiol. 2010, 63, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Kubzansky, L.D.; Park, N.; Peterson, C.; Vokonas, P.; Sparrow, D. Healthy psychological functioning and incident coronary heart disease: The importance of self-regulation. Arch. Gen. Psychiatry 2011, 68, 400–408. [Google Scholar] [CrossRef] [Green Version]
- Lopresti, A.L.; Hood, S.D.; Drummond, P.D. A review of lifestyle factors that contribute to important pathways associated with major depression: Diet, sleep and exercise. J. Affect. Disord. 2013, 148, 12–27. [Google Scholar] [CrossRef] [Green Version]
- Jacka, F.N.; O’Neil, A.; Opie, R.; Itsiopoulos, C.; Cotton, S.; Mohebbi, M.; Castle, D.; Dash, S.; Mihalopoulos, C.; Chatterton, M.L.; et al. A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Med. 2017, 15, 23. [Google Scholar] [CrossRef] [Green Version]
- Parletta, N.; Zarnowiecki, D.; Cho, J.; Wilson, A.; Bogomolova, S.; Villani, A.; Itsiopoulos, C.; Niyonsenga, T.; Blunden, S.; Meyer, B.; et al. A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A ran-domised controlled trial (HELFIMED). J. Australas. Coll. Nutr. Environ. Med. 2018, 37, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Opie, R.; O’Neil, A.; Itsiopoulos, C.; Jacka, F.N. The impact of whole-of-diet interventions on depression and anxiety: A systematic review of randomised controlled trials. Public Health Nutr. 2015, 18, 2074–2093. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef]
- Loewen, O.K.; Maximova, K.; Ekwaru, J.P.; Asbridge, M.; Ohinmaa, A.; Veugelers, P.J. Adherence to Life-Style Recommendations and Attention-Deficit/Hyperactivity Disorder: A Population-Based Study of Children Aged 10 to 11 Years. Psychosom. Med. 2020, 82, 305–315. [Google Scholar] [CrossRef]
- Ríos-Hernández, A.; Alda, J.A.; Farran-Codina, A.; Ferreira-García, E.; Izquierdo-Pulido, M. The Mediterranean Diet and ADHD in Children and Adolescents. Pediatrics 2017, 139, e20162027. [Google Scholar] [CrossRef] [Green Version]
- Briguglio, M.; Dell’Osso, B.; Galentino, R.; Dina, C.Z.; Banfi, G.; Porta, M. Tics and obsessive-compulsive disorder in relation to diet: Two case reports. L’Encephale 2018, 44, 479–481. [Google Scholar] [CrossRef]
- Ludlow, A.K.; Rogers, S. Understanding the impact of diet and nutrition on symptoms of Tourette syndrome: A scoping review. J. Child Health Care 2018, 22, 68–83. [Google Scholar] [CrossRef]
- Alkerwi, A.; Baydarlioglu, B.; Sauvageot, N.; Stranges, S.; Lemmens, P.; Shivappa, N.; Hébert, J.R. Smoking status is inversely associated with overall diet quality: Findings from the ORISCAV-LUX study. Clin. Nutr. 2017, 36, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.J.; Wilson, M.; Banks, M.; Rezannah, F.; Daglish, M. Prevalence of malnutrition and nutritional risk factors in patients undergoing alcohol and drug treatment. Nutrition 2012, 28, 738–743. [Google Scholar] [CrossRef]
- Guerrieri, R.; Nederkoorn, C.; Stankiewicz, K.; Alberts, H.; Geschwind, N.; Martijn, C.; Jansen, A. The influence of trait and induced state impulsivity on food intake in normal-weight healthy women. Appetite 2007, 49, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, A.; Sutin, A.R.; McCrae, R.R.; Deiana, B.; Ferrucci, L.; Schlessinger, D.; Uda, M.; Costa, P.T. Facets of per-sonality linked to underweight and overweight. Psychosom. Med. 2009, 71, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nederkoorn, C.; Houben, K.; Hofmann, W.; Roefs, A.; Jansen, A. Control yourself or just eat what you like? Weight gain over a year is predicted by an interactive effect of response inhibition and implicit preference for snack foods. Health Psychol. 2010, 29, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Lumley, J.; Stevenson, R.J.; Oaten, M.J.; Mahmut, M.; Yeomans, M.R. Individual differences in impulsivity and their relationship to a Western-style diet. Pers. Individ. Differ. 2016, 97, 178–185. [Google Scholar] [CrossRef] [Green Version]
- Schweren, L.J.S.; van Rooij, D.; Shi, H.; Larsson, H.; Arias-Vasquez, A.; Li, L.; Grimstvedt Kvalvik, L.; Haavik, J.; Buitelaar, J.; Hartman, C. Diet, physical activity and disinhibition in middle-aged and older adults: A UK Biobank study. Nutrients 2021, 13, 1607. [Google Scholar] [CrossRef]
- Ho, A.J.; Raji, C.A.; Becker, J.; Lopez, O.L.; Kuller, L.H.; Hua, X.; Lee, S.; Hibar, D.; Dinov, I.D.; Stein, J.; et al. Obesity is linked with lower brain volume in 700 AD and MCI patients. Neurobiol. Aging 2010, 31, 1326–1339. [Google Scholar] [CrossRef] [Green Version]
- Croll, P.H.; Voortman, T.; Ikram, M.A.; Franco, O.H.; Schoufour, J.D.; Bos, D.; Vernooij, M.W. Better diet quality relates to larger brain tissue volumes: The Rotterdam Study. Neurology 2018, 90, e2166–e2173. [Google Scholar] [CrossRef]
- Akbaraly, T.; Sexton, C.; Zsoldos, E.; Mahmood, A.; Filippini, N.; Kerleau, C.; Verdier, J.-M.; Virtanen, M.; Gabelle, A.; Ebmeier, K.P.; et al. Association of Long-Term Diet Quality with Hippocampal Volume: Longitudinal Cohort Study. Am. J. Med. 2018, 131, 1372-1381.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aron, A.R.; Robbins, T.; Poldrack, R.A. Inhibition and the right inferior frontal cortex: One decade on. Trends Cogn. Sci. 2014, 18, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Titova, O.E.; Ax, E.; Brooks, S.J.; Sjögren, P.; Cederholm, T.; Kilander, L.; Kullberg, J.; Larsson, E.-M.; Johansson, L.; Åhlström, H.; et al. Mediterranean diet habits in older individuals: Associations with cognitive functioning and brain volumes. Exp. Gerontol. 2013, 48, 1443–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staubo, S.C.; Aakre, J.A.; Vemuri, P.; Syrjanen, J.A.; Mielke, M.M.; Geda, Y.E.; Kremers, W.K.; Machulda, M.M.; Knopman, D.S.; Petersen, R.C.; et al. Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimer’s Dement. 2017, 13, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna, B.; Sweeney, J.A. The emergence of collaborative brain function: FMRI studies of the development of response inhibition. In Adolescent Brain Development: Vulnerabilities and Opportunities; New York Academy of Sciences: New York, NY, USA, 2004. [Google Scholar]
- Fineberg, A.N.; Potenza, M.N.; Chamberlain, S.; Berlin, A.H.; Menzies, L.; Bechara, A.; Sahakian, B.; Robbins, T.; Bullmore, E.; Hollander, E. Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review. Neuropsychopharmacology 2009, 35, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Bari, A.; Robbins, T.W. Inhibition and impulsivity: Behavioral and neural basis of response control. Prog. Neurobiol. 2013, 108, 44–79. [Google Scholar] [CrossRef]
- Cao, M.; Shu, N.; Cao, Q.; Wang, Y.; He, Y. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol. Neurobiol. 2014, 50, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Zandbelt, B.B.; Vink, M. On the Role of the Striatum in Response Inhibition. PLoS ONE 2010, 5, e13848. [Google Scholar] [CrossRef] [PubMed]
- Zeeuw, P.D.; Durston, S. Cognitive control in attention deficit hyperactivity disorder. In The Wiley Handbook of Cognitive Control; Egner, T., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 602–618. [Google Scholar]
- Zhang, R.; Geng, X.; Lee, T.M.C. Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis. Brain Struct. Funct. 2017, 222, 3973–3990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rooij, D.; Hoekstra, P.J.; Mennes, M.; von Rhein, D.; Thissen, A.J.; Heslenfeld, D.; Zwiers, M.P.; Faraone, S.V.; Oosterlaan, J.; Franke, B.; et al. Distinguishing adolescents with ADHD from their unaffected siblings and healthy comparison subjects by neural activation pat-terns during response inhibition. Am. J. Psychiatry 2015, 172, 674–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ide, J.S.; Li, H.T.; Chen, Y.; Le, T.M.; Li, C.S.; Zhornitsky, S.; Li, C.S.R. Gray matter volumetric correlates of behavioral activation and inhibition system traits in children: An exploratory voxel-based morphometry study of the ABCD project data. Neuroimage 2020, 220, 117085. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.; Wang, S.; Zhao, Y.; Lai, H.; Qin, K.; Li, J.; Biswal, B.B.; Sweeney, J.A.; Gong, Q. Brain gray matter structures associated with trait impulsivity: A systematic review and voxel-based meta-analysis. Hum. Brain Mapp. 2021, 42, 2214–2235. [Google Scholar] [CrossRef]
- Smith, A.B.; Taylor, E.; Brammer, M.; Toone, B.; Rubia, K. Task-specific hypoactivation in prefrontal and temporoparietal brain regions during motor inhibition and task switching in medication-naive children and adolescents with attention deficit hyperactivity disorder. Am. J. Psychiatry 2006, 163, 1044–1051. [Google Scholar] [CrossRef]
- Lansbergen, M.M.; Böcker, K.B.; Bekker, E.M.; Kenemans, J.L. Neural correlates of stopping and self-reported impulsivity. Clin. Neurophysiol. 2007, 118, 2089–2103. [Google Scholar] [CrossRef] [PubMed]
- Cubillo, A.; Halari, R.; Ecker, C.; Giampietro, V.; Taylor, E.; Rubia, K. Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood Attention-Deficit Hyperactivity Disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching. J. Psychiatr. Res. 2010, 44, 629–639. [Google Scholar] [CrossRef]
- Sebastian, A.; Gerdes, B.; Feige, B.; Klöppel, S.; Lange, T.; Philipsen, A.; van Elst, L.T.; Lieb, K.; Tüscher, O. Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD. Psychiatry Res. Neuroimaging 2012, 202, 132–141. [Google Scholar] [CrossRef]
- Verbruggen, F.; Aron, A.R.; Band, G.P.; Beste, C.; Bissett, P.G.; Brockett, A.T.; Brown, J.W.; Chamberlain, S.R.; Chambers, C.D.; Colonius, H.; et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 2019, 8, 46323. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littlejohns, T.J.; Holliday, J.; Gibson, L.M.; Garratt, S.; Oesingmann, N.; Alfaro-Almagro, F.; Bell, J.D.; Boultwood, C.; Collins, R.; Conroy, M.C.; et al. The UK Biobank imaging enhancement of 100,000 participants: Rationale, data collection, management and future directions. Nat. Commun. 2020, 11, 2624. [Google Scholar] [CrossRef] [PubMed]
- Golubic, R.; May, A.M.; Benjaminsen Borch, K.; Overvad, K.; Charles, M.A.; Diaz, M.J.; Amiano, P.; Palli, D.; Valanou, E.; Vigl, M.; et al. Validity of electroni-cally administered Recent Physical Activity Questionnaire (RPAQ) in ten European countries. PLoS ONE 2014, 9, e92829. [Google Scholar]
- Steele, C.C.; Steele, T.J.; Gwinner, M.; Rosenkranz, S.K.; Kirkpatrick, K. The relationship between dietary fat intake, impulsive choice, and metabolic health. Appetite 2021, 165, 105292. [Google Scholar] [CrossRef] [PubMed]
- Archer, T.; Oscar-Berman, M.; Blum, K.; Gold, M. Neurogenetics and Epigenetics in Impulsive Behaviour: Impact on Reward Circuitry. J. Genet. Syndr. Gene Ther. 2012, 3, 1000115. [Google Scholar] [CrossRef] [Green Version]
- Grissom, N.M.; Herdt, C.T.; Desilets, J.; Lidsky-Everson, J.; Reyes, T.M. Dissociable Deficits of Executive Function Caused by Gestational Adversity are Linked to Specific Transcriptional Changes in the Prefrontal Cortex. Neuropsychopharmacology 2014, 40, 1353–1363. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med. 2013, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lee, I.-S.; Braun, C.; Enck, P. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review. J. Neurogastroenterol. Motil. 2016, 22, 589–605. [Google Scholar] [CrossRef]
- Johnson, D.; Thurairajasingam, S.; Letchumanan, V.; Chan, K.-G.; Lee, L.-H. Exploring the Role and Potential of Probiotics in the Field of Mental Health: Major Depressive Disorder. Nutrients 2021, 13, 1728. [Google Scholar] [CrossRef]
- Guerrieri, R.; Nederkoorn, C.; Jansen, A. How impulsiveness and variety influence food intake in a sample of healthy women. Appetite 2007, 48, 119–122. [Google Scholar] [CrossRef]
- Sarmugam, R.; Worsley, A. Dietary Behaviours, Impulsivity and Food Involvement: Identification of Three Consumer Segments. Nutrients 2015, 7, 8036–8057. [Google Scholar] [CrossRef] [PubMed]
- Hardcastle, S.J.; Thøgersen-Ntoumani, C.; Chatzisarantis, N.L. Food Choice and Nutrition: A Social Psychological Perspective. Nutrients 2015, 7, 8712–8715. [Google Scholar] [CrossRef] [Green Version]
Frontal Cortex | IC1 | IC2 | IC3 | IC4 |
---|---|---|---|---|
frontal pole | 0.48 | 0.41 | 0.11 | −0.47 |
superior frontal gyrus | 0.21 | 0.22 | 0.09 | −0.51 |
medial frontal gyrus | 0.39 | 0.38 | 0.06 | −0.32 |
inferior frontal gyrus, ant | −0.05 | 0.34 | −0.04 | −0.55 |
inferior frontal gyrus, post | 0.15 | 0.30 | −0.09 | −0.47 |
frontal medial cortex | 0.33 | 0.14 | −0.05 | −0.24 |
juxtrapositional lobule cortex | 0.18 | 0.13 | 0.04 | −0.35 |
frontal orbital cortex | 0.05 | 0.34 | −0.04 | −0.62 |
precentral gyrus | 0.46 | 0.28 | 0.04 | −0.37 |
oribitofrontal cortex | 0.24 | 0.51 | 0.14 | −0.25 |
central oppercular cortex | 0.42 | 0.27 | −0.01 | −0.63 |
posterior opercular cortex | 0.30 | 0.30 | 0.06 | −0.65 |
Insula | ||||
insular cortex | 0.32 | 0.26 | 0.27 | −0.61 |
cingulate cortex | ||||
subcallossal cortex | 0.38 | 0.31 | 0.20 | −0.45 |
paracingulate gyrus | 0.32 | 0.38 | 0.01 | −0.42 |
cingulate cortex | 0.38 | 0.27 | 0.21 | −0.14 |
cingulate cortex | 0.51 | 0.29 | 0.31 | −0.31 |
parietal cortex | ||||
postcentral gyrus | 0.56 | 0.27 | −0.05 | −0.26 |
superior parietal lobule | 0.36 | 0.19 | 0.03 | −0.21 |
supramarginal gyrus, anteriordivision | 0.60 | 0.17 | 0.00 | −0.21 |
supramarginal gyrus, posteriordivision | 0.68 | 0.15 | 0.05 | −0.15 |
angular gyrus | 0.65 | 0.11 | 0.07 | −0.10 |
occipital cortex | ||||
lateral occipital cortex, inf | 0.43 | 0.29 | 0.14 | −0.31 |
lateral occipital cortex, sup | 0.38 | 0.51 | 0.10 | −0.24 |
intracalcine cortex | 0.00 | 0.78 | 0.18 | −0.09 |
precuneus | 0.45 | 0.48 | 0.14 | −0.35 |
cuneus | 0.25 | 0.64 | 0.00 | −0.23 |
lingual cortex | 0.33 | 0.49 | 0.32 | −0.22 |
occipital fusiform gyrus | 0.24 | 0.51 | 0.14 | −0.25 |
supracalcine cortex | 0.29 | 0.67 | 0.12 | −0.12 |
occipital pole | 0.14 | 0.71 | 0.09 | −0.24 |
temporal cortex | ||||
temporal pole | 0.31 | 0.18 | 0.15 | −0.22 |
superior temporal gyrus, ant | 0.26 | 0.09 | 0.10 | −0.45 |
superior temporal gyrus, post | 0.40 | 0.17 | 0.12 | −0.53 |
medial temporal gyrus, ant | 0.20 | 0.11 | 0.16 | −0.26 |
medial temporal gyrus, post | 0.52 | 0.18 | 0.14 | −0.31 |
medial temporal gyrus, temp | 0.62 | 0.24 | 0.12 | −0.10 |
inferior temporal gyrus, ant | 0.18 | 0.03 | 0.15 | −0.20 |
inferior temporal gyrus, post | 0.39 | 0.11 | 0.08 | −0.30 |
inferior temporal gyrus, temp | 0.58 | 0.18 | 0.09 | −0.19 |
parahippocampal gyrus | 0.28 | 0.13 | 0.30 | −0.14 |
parahippocampal gyrus, post | 0.24 | 0.17 | 0.27 | −0.23 |
temporal fusiform cortex, anterior | 0.31 | 0.03 | 0.19 | −0.21 |
temporal fusiform cortex, posterior | 0.47 | 0.08 | 0.12 | −0.42 |
temporal occipital cortex | 0.52 | 0.16 | 0.23 | −0.31 |
planum polare | 0.40 | 0.20 | 0.07 | −0.53 |
heschl’s gyus | 0.21 | 0.29 | 0.00 | −0.76 |
planum temporale | 0.22 | 0.27 | 0.09 | −0.76 |
subcortical areas | ||||
thalamus | 0.19 | 0.20 | 0.53 | −0.17 |
caudate | 0.15 | 0.16 | 0.70 | −0.10 |
pallidum | −0.02 | 0.01 | 0.57 | 0.05 |
hippocampus | 0.25 | 0.22 | 0.45 | −0.27 |
amygdala | 0.24 | 0.24 | 0.42 | −0.33 |
putamen | 0.02 | 0.12 | 0.71 | −0.08 |
nucleus accumbens | −0.17 | 0.09 | 0.35 | −0.31 |
Sample | Mean | Association with Disinhibition (B) | p-Value |
---|---|---|---|
Sex | 7037 m 8221f | 0.145 | <0.001 |
Age | 40–69 yo mean = 55 yo | −0.204 | <0.001 |
Unemployment | 0.23 | 0.014 | |
Ethnicity | 0.12 | 0.035 | |
IMD | 0.09 | <0.01 | |
MVPA | 0.029 | 0.003 |
Healthy Diet | ||||||
---|---|---|---|---|---|---|
Effect | B | Std. Error | z-Value | p (Adjusted) | % of Total Effect | |
A1 | Healthy Diet - IC1 | −0.105 | 0.008 | −12.767 | <0.001 | |
A2 | Healthy Diet - IC2 | 0.064 | 0.008 | 7.828 | <0.001 | |
A3 | Healthy Diet - IC3 | 0.019 | 0.008 | 2.375 | <0.018 | |
A4 | Healthy Diet - IC4 | 0.047 | 0.008 | 5.718 | <0.001 | |
B1 | IC1 - Disinhibition | 0.038 | 0.008 | 4.487 | <0.001 | |
B2 | IC2 - Disinhibition | −0.012 | 0.008 | −1.532 | 0.126 | |
B3 | IC3 - Disinhibition | −0.012 | 0.008 | −1.563 | 0.118 | |
B4 | IC4 - Disinhibition | −0.009 | 0.008 | −1.129 | 0.259 | |
C | Healthy Diet - Disinhibition | −0.035 | 0.008 | −4.3 | <0.001 | 87.5 |
D1 | Healthy Diet - IC1 - Disinhibition | −0.004 | 0.001 | −4.23 | <0.001 | 10 |
D2 | Healthy Diet - IC2 - Disinhibition | −0.001 | 0.0001 | −1.493 | 0.135 | 2.5 |
D3 | Healthy Diet - IC3- Disinhibition | −0.0001 | 0.0001 | −1.183 | 0.237 | 0.25 |
D4 | Healthy Diet - IC4 - Disinhibition | −0.0001 | 0.0001 | −1.094 | 0.274 | 0.25 |
TOTAL | C + D (direct + indirect effects) | −0.040 | 0.008 | −4.915 | <0.001 |
Restricted Diet | ||||||
---|---|---|---|---|---|---|
Effect | B | Std. Error | z-Value | p (Adjusted) | % of Total Effect | |
A1 | Restricted Diet – IC1 | 0 | 0.009 | 0.033 | 0.974 | |
A2 | Restricted Diet – IC2 | −0.016 | 0.009 | −1.723 | 0.085 | |
A3 | Restricted Diet – IC3 | 0.029 | 0.008 | 3.617 | <0.001 | |
A4 | Restricted Diet – IC4 | 0.029 | 0.01 | 3.002 | <0.003 | |
B1 | IC1 – Disinhibition | 0.039 | 0.008 | 4.669 | <0.001 | |
B2 | IC2 – Disinhibition | −0.012 | 0.009 | −1.347 | 0.178 | |
B3 | IC3 – Disinhibition | −0.012 | 0.007 | −1.768 | 0.077 | |
B4 | IC4 – Disinhibition | −0.01 | 0.007 | −1.376 | 0.169 | |
C | Restricted Diet - Disinhibition | 0.018 | 0.007 | 2.56 | <0.01 | 105.8 |
D1 | Restricted Diet - IC1 - Disinhibition | 0 | 0 | 0.03 | 0.976 | 0 |
D2 | Restricted Diet - IC2 - Disinhibition | 0 | 0 | 0.96 | 0.337 | 0 |
D3 | Restricted Diet - IC3- Disinhibition | 0 | 0 | −1.355 | 0.175 | 0 |
D4 | Restricted Diet - IC4 - Disinhibition | 0 | 0 | −1.139 | 0.255 | 0 |
TOTAL | C + D (direct + indirect effects) | 0.017 | 0.007 | 2.447 | 0.014 |
Meat/Fish Diet | ||||||
---|---|---|---|---|---|---|
Effect | B | Std. Error | z-Value | p (Adjusted) | % of Total Effect | |
A1 | Meat/Fish Diet – IC1 | 0.052 | 0.008 | 6.725 | <0.001 | |
A2 | Meat/Fish Diet – IC2 | −0.058 | 0.008 | −6.888 | <0.001 | |
A3 | Meat/Fish Diet – IC3 | −0.016 | 0.008 | −1.851 | 0.064 | |
A4 | Meat/Fish Diet – IC4 | −0.148 | 0.008 | −17.864 | <0.001 | |
B1 | IC1 – Disinhibition | 0.039 | 0.007 | 5.293 | <0.001 | |
B2 | IC2 – Disinhibition | −0.013 | 0.008 | −1.509 | 0.131 | |
B3 | IC3 – Disinhibition | −0.012 | 0.007 | −1.712 | 0.087 | |
B4 | IC4 – Disinhibition | −0.009 | 0.007 | −1.357 | 0.175 | |
C | Meat/Fish Diet - Disinhibition | 0.018 | 0.008 | 2.313 | <0.021 | 0.78 |
D1 | Meat/Fish Diet - IC1 - Disinhibition | 0.002 | 0.001 | 3.826 | <0.001 | 0.09 |
D2 | Meat/Fish Diet - IC2 - Disinhibition | 0.001 | 0 | 1.476 | 0.14 | 0.04 |
D3 | Meat/Fish Diet - IC3- Disinhibition | 0 | 0 | 1.114 | 0.265 | 0.00 |
D4 | Meat/Fish Diet - IC4 - Disinhibition | 0.001 | 0.001 | 1.345 | 0.179 | 0.04 |
TOTAL | C + D (direct + indirect effects) | 0.023 | 0.008 | 2.782 | 0.005 |
High-Fat Dairy | ||||||
---|---|---|---|---|---|---|
Effect | B | Std. Error | z-Value | p (Adjusted) | % of Total Effect | |
A1 | High-fat dairy Diet – IC1 | 0.048 | 0.008 | 5.592 | <0.001 | |
A2 | High-fat dairy Diet – IC2 | −0.023 | 0.008 | −2.732 | 0.006 | |
A3 | High-fat dairy Diet – IC3 | −0.042 | 0.008 | −5.493 | <0.001 | |
A4 | High-fat dairy Diet – IC4 | −0.035 | 0.008 | −4.375 | <0.001 | |
B1 | IC1 – Disinhibition | 0.039 | 0.009 | 4.212 | <0.001 | |
B2 | IC2 – Disinhibition | −0.013 | 0.008 | −1.623 | 0.105 | |
B3 | IC3 – Disinhibition | −0.012 | 0.008 | −1.446 | 0.148 | |
B4 | IC4 - Disinhibition | −0.01 | 0.008 | −1.352 | 0.176 | |
C | High-fat Diet - Disinhibition | 0.012 | 0.007 | 1.788 | 0.074 | 0.80 |
D1 | High-fat Diet - IC1 - Disinhibition | 0.002 | 0.001 | 3.057 | <0.002 | 0.13 |
D2 | High-fat Diet - IC2 - Disinhibition | 0 | 0 | 1.37 | 0.171 | 0.00 |
D3 | High-fat Diet - IC3- Disinhibition | 0.001 | 0 | 1.34 | 0.18 | 0.07 |
D4 | High-fat Diet - IC4 - Disinhibition | 0 | 0 | 1.316 | 0.188 | 0.00 |
TOTAL | C + D (direct + indirect effects) | 0.015 | 0.007 | 2.17 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Rooij, D.; Schweren, L.; Shi, H.; Hartman, C.A.; Buitelaar, J.K. Cortical and Subcortical Brain Volumes Partially Mediate the Association between Dietary Composition and Behavioral Disinhibition: A UK Biobank Study. Nutrients 2021, 13, 3542. https://doi.org/10.3390/nu13103542
van Rooij D, Schweren L, Shi H, Hartman CA, Buitelaar JK. Cortical and Subcortical Brain Volumes Partially Mediate the Association between Dietary Composition and Behavioral Disinhibition: A UK Biobank Study. Nutrients. 2021; 13(10):3542. https://doi.org/10.3390/nu13103542
Chicago/Turabian Stylevan Rooij, Daan, Lizanne Schweren, Huiqing Shi, Catharina A Hartman, and Jan K Buitelaar. 2021. "Cortical and Subcortical Brain Volumes Partially Mediate the Association between Dietary Composition and Behavioral Disinhibition: A UK Biobank Study" Nutrients 13, no. 10: 3542. https://doi.org/10.3390/nu13103542
APA Stylevan Rooij, D., Schweren, L., Shi, H., Hartman, C. A., & Buitelaar, J. K. (2021). Cortical and Subcortical Brain Volumes Partially Mediate the Association between Dietary Composition and Behavioral Disinhibition: A UK Biobank Study. Nutrients, 13(10), 3542. https://doi.org/10.3390/nu13103542