Capsaicin Analogue Supplementation Does Not Improve 10 km Running Time-Trial Performance in Male Amateur Athletes: A Randomized, Crossover, Double-Blind and Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Supplementation Protocol
2.4. 10 km Time-Trial Running Test
2.5. Blood Lactate
2.6. Rating of Perceived Exertion and Heart Rate
2.7. Incremental Test
2.8. Body Composition and Anthropometry
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hagan, J.C. Marathon Running: An Unhealthy Addiction! Mo. Med. 2018, 115, 96–97. [Google Scholar] [PubMed]
- Li, F.; Wang, R.; Newton, R.U.; Sutton, D.; Shi, Y.; Ding, H. Effects of complex training versus heavy resistance training on neuromuscular adaptation, running economy and 5-km performance in well-trained distance runners. PeerJ 2019, 7, e6787. [Google Scholar] [CrossRef] [Green Version]
- Paavolainen, L.; Nummela, A.; Rusko, H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand. J. Med. Sci. Sports 2000, 10, 286–291. [Google Scholar] [CrossRef]
- Hausken, K. Evolutions in the physiology of skiing, skating and running in the Olympics. J. Sports Med. Phys. Fit. 2019, 59, 1175–1194. [Google Scholar] [CrossRef] [PubMed]
- Skovgaard, C.; Christensen, P.M.; Larsen, S.; Andersen, T.R.; Thomassen, M.; Bangsbo, J. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners. J. Appl. Physiol. 2014, 117, 1097–1109. [Google Scholar] [CrossRef] [PubMed]
- Vuorimaa, T.; Häkkinen, K.; Vähäsöyrinki, P.; Rusko, H. Comparison of three maximal anaerobic running test protocols in marathon runners, middle-distance runners and sprinters. Int. J. Sports Med. 1996, 17 (Suppl. 2), S109–S1113. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, N.; Taboga, P.; Rejc, E.; Simunic, B.; Antonutto, G.; Lazzer, S. Effects of an Uphill Marathon on Running Mechanics and Lower-Limb Muscle Fatigue. Int. J. Sports Physiol. Perform. 2016, 11, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Pearcey, G.E.P.; Bradbury-Squires, D.J.; Kawamoto, J.-E.; Drinkwater, E.J.; Behm, D.G.; Button, D.C. Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J. Athl. Train. 2015, 50, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.M.; Astorino, T.A. A systematic review of the efficacy of ergogenic aids for improving running performance. J. Strength Cond. Res. 2013, 27, 1699–1707. [Google Scholar] [CrossRef]
- Ludy, M.J.; Moore, G.E.; Mattes, R.D. The effects of capsaicin and capsiate on energy balance: Critical review and meta-analyses of studies in humans. Chem. Senses 2012, 37, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Ohnuki, K.; Haramizu, S.; Oki, K.; Watanabe, T.; Yazawa, S.; Fushiki, T. Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci. Biotechnol. Biochem. 2001, 65, 2735–2740. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, M.C.; Billaut, F.; Panissa, V.L.G.; Rossi, F.E.; Figueiredo, C.; Caperuto, E.C.; Lira, F.S. Capsaicin supplementation increases time to exhaustion in high-intensity intermittent exercise without modifying metabolic responses in physically active men. Eur. J. Appl. Physiol. 2019, 119, 971–979. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, M.C.; Cholewa, J.M.; Gobbo, L.A.; De Oliveira, J.V.; Lira, F.S.; Rossi, F.E.; De Oliveira, J.V.N.S. Acute Capsaicin Supplementation Improves 1500-m Running Time-Trial Performance and Rate of Perceived Exertion in Physically Active Adults. J. Strength Cond. Res. 2018, 32, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.A.; Freitas, M.C.; Cholewa, J.M.; Panissa, V.L.G.; Nakamura, F.Y.; Silva, V.E.L.M.; Sá, A.M.; Rossi, P.A.Q.; Ribeiro, S.L.G.; Santos, M.A.; et al. Acute capsaicin analog supplementation improves 400 and 3000 M running time-trial performance. Int. J. Exerc. Sci. 2020, 13, 10. [Google Scholar]
- De Freitas, M.C.; Cholewa, J.M.; Panissa, V.L.G.; Toloi, G.G.; Netto, H.C.; De Freitas, C.Z.; Freire, R.V.; Lira, F.S.; Rossi, F.E. Acute Capsaicin Supplementation Improved Resistance Exercise Performance Performed After a High-Intensity Intermittent Running in Resistance-Trained Men. J. Strength Cond. Res. 2019. [Google Scholar] [CrossRef]
- Shin, K.O.; Moritani, T. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men. J. Nutr. Sci. Vitaminol. 2007, 53, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Szallasi, A.; Blumberg, P.M. Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev. 1999, 51, 159–212. [Google Scholar]
- Chaiyasit, K.; Khovidhunkit, W.; Wittayalertpanya, S. Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J. Med. Assoc. Thai. 2009, 92, 108–113. [Google Scholar]
- Rollyson, W.D.; Stover, C.A.; Brown, K.C.; Perry, H.E.; Stevenson, C.D.; McNees, C.A.; Ball, J.G.; Valentovic, M.A.; Dasgupta, P. Bioavailability of capsaicin and its implications for drug delivery. J. Control Release 2014, 196, 96–105. [Google Scholar] [CrossRef] [Green Version]
- Lotteau, S.; Ducreux, S.; Romestaing, C.; Legrand, C.; Pr, F.V.C. Characterization of functional TRPV1 channels in the sarcoplasmic reticulum of mouse skeletal muscle. PLoS ONE 2013, 8, e58673. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Kawada, T.; Kurosawa, M.; Sato, A.; Iwai, K. Adrenal sympathetic efferent nerve and catecholamine secretion excitation caused by capsaicin in rats. Am. J. Physiol. 1988, 255 Pt 1, E23–E27. [Google Scholar] [CrossRef]
- Oshioka, M.; Lim, K.; Kikuzato, S.; Kiyonaga, A.; Tanaka, H.; Shindo, M.; Suzuki, M. Effects of red-pepper diet on the energy metabolism in men. J. Nutr. Sci. Vitaminol. 1995, 41, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Padilha, C.D.S.; Billaut, F.; Figueiredo, C.; Panissa, V.L.G.; Rossi, F.E.; Lira, F.S. Capsaicin Supplementation during High-intensity Continuous Exercise: A Double-blind Study. Int. J. Sports Med. 2020, 41, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, J.; Lim, K. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity. J. Nutr. Sci. Vitaminol. 2016, 62, 141–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opheim, M.N.; Rankin, J.W. Effect of capsaicin supplementation on repeated sprinting performance. J. Strength Cond. Res. 2012, 26, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M.; Carter, H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000, 29, 373–386. [Google Scholar] [CrossRef] [PubMed]
- De Freitas, M.C.; Cholewa, J.M.; Freire, R.V.; Carmo, B.A.; Bottan, J.; Bratfich, M.; Della Bandeira, M.P.; Gonçalves, D.C.; Caperuto, E.C.; Lira, F.S.; et al. Acute Capsaicin Supplementation Improves Resistance Training Performance in Trained Men. J. Strength Cond. Res. 2018, 32, 2227–2232. [Google Scholar] [CrossRef]
- Peserico, C.S.; Mezzaroba, P.V.; Da Silva, D.F.; Kravchychyn, A.C.P.; Alves, J.C.C.; Machado, F.A. Blood lactate concentrations following maximal incremental test in male runners with different ages. Rev. Bras. Educ. Física Esporte 2018, 32, 12. [Google Scholar] [CrossRef]
- Pasqua, L.A.; Damasceno, M.V.; Bueno, S.; Zagatto, A.M.; De Araújo, G.G.; Lima-Silva, A.E.; Bertuzzi, R. Determinant factors of peak treadmill speed in physically active men. J. Sports Med. Phys. Fit. 2018, 58, 204–209. [Google Scholar]
- Kazuya, Y.; Tonson, A.; Pecchi, E.; Dalmasso, C.; Vilmen, C.; Le Fur, Y.; Bernard, M.; Bendahan, D.; Giannesini, B. A single intake of capsiate improves mechanical performance and bioenergetics efficiency in contracting mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1110–E1119. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.-J.; Huang, W.-C.; Chiu, C.-C.; Liu, Y.-L.; Chiu, W.-C.; Chen, H.-Y.; Chiu, Y.-S.; Huang, C.-C. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice. Nutrients 2016, 8, 648. [Google Scholar] [CrossRef] [PubMed]
Variables. | (N = 21) |
---|---|
Age (years) | 29.3 ± 5.4 |
Weight (kg) | 74.2 ± 11.3 |
Height (cm) | 176.0 ± 0.0 |
Fat mass (%) | 12.7 ± 3.8 |
Fat Free Mass (kg) | 64.3 ± 7.2 |
O2max (mL·k−1·min−1) | 62.7 ± 8.4 |
PLA | CAP | p-Value | |
---|---|---|---|
Total intake (kcal) | 1.791± 661 | 1. 853 ± 476 | 0.322 |
Protein (g) | 97.2 ± 41.7 | 107.2 ± 47.7 | 0.221 |
Carbohydrate (g) | 213.6 ± 97.4 | 206.6 ± 69.3 | 0.9 |
Lipids (g) | 61.0 ± 28.4 | 66.9 ± 26.0 | 0.112 |
Total intake (kcal·kg−1) | 24.8 ± 9.2 | 21.8 ± 10.9 | 0.357 |
Protein (g·kg−1) | 1.3 ± 0.5 | 1.2 ± 0.7 | 0.669 |
Carbohydrate (g·kg−1) | 3.0 ± 1.4 | 2.4 ± 1.3 | 0.219 |
Lipids (g·kg−1) | 0.8 ± 0.3 | 0.7 ± 0.4 | 0.66 |
Trial 1 (Blinded) | Trial 2 (Blinded) | ICC | CV % | p-Value | PLA | CAP | ICC | CV % | p-Value | |
---|---|---|---|---|---|---|---|---|---|---|
Time 10 km (min) | 45.13 ± 0.004 | 45.00 ± 0.004 | 0.98 | 1.61 | 0.429 | 45.08 ± 0.004 | 45.04 ± 0.004 | 0.99 | 1.62 | 0.828 |
Mean velocity (km·h−1) | 13.5 ± 1.8 | 13.6 ± 1.9 | 0.98 | 2.66 | 0.294 | 13.5 ± 1.9 | 13.5 ± 1.8 | 0.99 | 1.96 | 0.707 |
Vmax relative to incremental test (%) | 76.1 ± 100 | 76.6 ± 103.2 | 0.9 | 6.13 | - | 76.5 ± 104.2 | 76.2 ± 98.9 | 0.97 | 2.73 | - |
HRpeak (bpm) | 181 ± 12.9 | 181 ± 12.1 | 0.62 | 6.41 | 0. 798 | 181 ± 11.2 | 180 ± 13.5 | 0.9 | 6.53 | 0.942 |
RPEpeak (6–20-point BORG scale) | 17 ± 2.0 | 17 ± 2.3 | 0.88 | 6.01 | 0.55 | 17 ± 2.3 | 17 ± 2.0 | 0.52 | 10.84 | 0.55 |
[La−] rest (mmol·L−1) | 0.8 ± 0.3 | 0.9 ± 0.5 | 0.82 | 8.42 | 0.457 | 0.9 ± 0.4 | 0.8 ± 0.4 | 0.45 | 16.9 | 0.507 |
Peak [La−] (mmol·L−1) | 5.0 ± 1.6 | 5.5 ± 1.9 | 0.94 | 7.45 | 0.219 | 5.2 ± 1.8 | 5.2 ± 1.8 | 0.7 | 5.1 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
von Ah Morano, A.E.; Padilha, C.S.; Soares, V.A.M.; Andrade Machado, F.; Hofmann, P.; Rossi, F.E.; Lira, F.S. Capsaicin Analogue Supplementation Does Not Improve 10 km Running Time-Trial Performance in Male Amateur Athletes: A Randomized, Crossover, Double-Blind and Placebo-Controlled Study. Nutrients 2021, 13, 34. https://doi.org/10.3390/nu13010034
von Ah Morano AE, Padilha CS, Soares VAM, Andrade Machado F, Hofmann P, Rossi FE, Lira FS. Capsaicin Analogue Supplementation Does Not Improve 10 km Running Time-Trial Performance in Male Amateur Athletes: A Randomized, Crossover, Double-Blind and Placebo-Controlled Study. Nutrients. 2021; 13(1):34. https://doi.org/10.3390/nu13010034
Chicago/Turabian Stylevon Ah Morano, Ana Elisa, Camila S. Padilha, Vinicius Aparecido Matos Soares, Fabiana Andrade Machado, Peter Hofmann, Fabrício E. Rossi, and Fábio Santos Lira. 2021. "Capsaicin Analogue Supplementation Does Not Improve 10 km Running Time-Trial Performance in Male Amateur Athletes: A Randomized, Crossover, Double-Blind and Placebo-Controlled Study" Nutrients 13, no. 1: 34. https://doi.org/10.3390/nu13010034
APA Stylevon Ah Morano, A. E., Padilha, C. S., Soares, V. A. M., Andrade Machado, F., Hofmann, P., Rossi, F. E., & Lira, F. S. (2021). Capsaicin Analogue Supplementation Does Not Improve 10 km Running Time-Trial Performance in Male Amateur Athletes: A Randomized, Crossover, Double-Blind and Placebo-Controlled Study. Nutrients, 13(1), 34. https://doi.org/10.3390/nu13010034