Anti-Obesity Effects of Petasites japonicus (Meowi) Ethanol Extract on RAW 264.7 Macrophages and 3T3-L1 Adipocytes and Its Characterization of Polyphenolic Compounds
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Reagents
2.2. Cell Culture and Viability
2.3. Measurement of Nitric Oxide
2.4. Oil-red O Staining
2.5. Measurement of Chemokine and Adipocytokines
2.6. Analysis of mRNA Expression
2.7. Extraction of Phenolic Acids and Flavonoids
2.8. UPLC-DAD-QTOF/MS Conditions
2.9. Statistical Analysis
3. Results
3.1. EPJ Inhibits NO Production in LPS-Stimulated Macrophages
3.2. EPJ Inhibits MCP-1 and TNFα in LPS-Stimulated Macrophages
3.3. EPJ Improves MCP-1 and Adiponectin in Differentiated 3T3-L1 Adipocytes
3.4. EPJ Decreases Lipid Accumulation in Differentiated 3T3-L1 Adipocytes
3.5. Anti-Lipogenic Effect of EPJ in Differentiated 3T3-L1 Adipocytes
3.6. Characterization of Phenolic Acids and Flavonoids in EPJ
3.6.1. Characterization of Phenolic Acids
3.6.2. Characterization of Flavonoids
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Yip, W.C.Y.; Sequeira, I.R.; Plank, L.D.; Poppitt, S.D. Prevalence of pre-diabetes across ethnicities: A review of impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) for classification of dysglycemia. Nutrients 2017, 9, 1273. [Google Scholar] [CrossRef]
- Zhong, Q.; Zhao, S.; Yu, B.; Wang, X.; Matyal, R.; Li, Y.; Jiang, Z. High-density Lipoprotein Increases the Uptake of Oxidized Low Density Lipoprotein via PPARgamma/CD36 Pathway in Inflammatory Adipocytes. Int. J. Biol. Sci. 2015, 11, 256–265. [Google Scholar] [CrossRef]
- Johnson, A.R.; Milner, J.J.; Makowski, L. The inflammation highway: Metabolism accelerates inflammatory traffic in obesity. Immunol. Rev. 2012, 249, 218–238. [Google Scholar] [CrossRef]
- Lumeng, C.N.; Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Investig. 2011, 121, 2111–2117. [Google Scholar] [CrossRef]
- Kawada, T.; Goto, T.; Hirai, S.; Kang, M.S.; Uemura, T.; Yu, R.; Takahashi, N. Dietary regulation of nuclear receptors in obesity-related metabolic syndrome. Asia Pac. J. Clin. Nutr. 2008, 17 (Suppl. 1), 126–130. [Google Scholar]
- Romacho, T.; Glosse, P.; Richter, I.; Elsen, M.; Schoemaker, M.H.; van Tol, E.A.; Eckel, J. Nutritional ingredients modulate adipokine secretion and inflammation in human primary adipocytes. Nutrients 2015, 7, 865–886. [Google Scholar] [CrossRef]
- Maeda, K.; Okubo, K.; Shimomura, I.; Funahashi, T.; Matsuzawa, Y.; Matsubara, K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 1996, 221, 286–289. [Google Scholar] [CrossRef]
- Díez, J.J.; Lglesias, P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 2003, 148, 293–300. [Google Scholar] [CrossRef]
- Ukkola, O.; Santaniemi, M. Adiponection: A link between excess adiposity and associated comorbidities? J. Mol. Med. 2002, 80, 696–702. [Google Scholar] [CrossRef]
- Nedvídková, J.; Smitka, K.; Kopský, V.; Hainer, V. Adiponectin, an adipocyte-derived protein. Physiol. Res. 2005, 54, 133–140. [Google Scholar]
- Ota, T. Chemokine systems link obesity to insulin resistance. Diabetes Metab. J. 2013, 37, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Tsatsanis, C.; Zacharioudaki, V.; Androulidaki, A.; Dermitzaki, E.; Charalampopoulos, I.; Minas, V.; Gravanis, A.; Margioris, A.N. Adiponectin induces TNF alpha and IL-6 in macrophages and promotes tolerance to itself and other pro-inflammatory stimuli. Biochem. Biophys. Res. Commun. 2005, 335, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Ge, K. Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis. Cell Biosci. 2014, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Takakuwa, R.; Marchand, S.; Dentz, E.; Bornert, J.M.; Messaddeq, N.; Wendling, O.; Mark, M.; Desvergne, B.; Wahli, W.; et al. Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc. Natl. Acad. Sci. USA 2004, 101, 4543–4547. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, Z.A.; Kadayifci, A. Insulin sensitizers for the treatment of non-alcoholic fatty liver disease. World J. Hepatol. 2014, 6, 199–206. [Google Scholar] [CrossRef]
- Kim, J.; Nam, H.; Kim, Y.; Jung, H.; Choi, Y.; Oh, J.; Chun, S.; Suh, J. Anti-adipogenic effects in 3T3-L1 cells of acetone extracts and fractions from Styrax japonica fruit. Food Sci. Biotechnol. 2015, 24, 1513–1521. [Google Scholar] [CrossRef]
- Moon, H.K.; Kim, K.S.; Chung, S.K.; Kim, J.K. Effect of wild Korean ginseng (Panax ginseng) extract on blood glucose and serum lipid contents in rats with multiple low-dose streptozotocin-induced diabetes. Food Sci. Biotechnol. 2015, 24, 1505–1511. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, N.; Zhang, Z.; Li, W.; Zhu, W. Resveratrol induces cell apoptosis in adipocytes via AMPK activation. Biochem. Biophys. Res. Commun. 2015, 457, 608–613. [Google Scholar] [CrossRef]
- Hassan, R.; Mohammad, H.F.; Reza, K. Polyphenols and their benefits. Int. J. Food Properies 2017, 20, 1700–1741. [Google Scholar]
- Kang, H.G.; Jeong, S.H.; Cho, J.H. Antimutagenic and anticarcinogenic effect of methanol extracts of Petasites japonicus Maxim leaves. J. Vet. Sci. 2010, 11, 51–58. [Google Scholar] [CrossRef]
- Lee, K.P.; Kang, S.; Park, S.J.; Choi, Y.W.; Lee, Y.G.; Im, D.S. Anti-allergic and anti-inflammatory effects of bakkenolide B isolated from Petasites japonicus leaves. J. Ethnopharmacol. 2013, 148, 890–894. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Yang, E.J.; Yun, C.Y.; Kim, D.H.; Kim, I.S. Suppressive effect of Petasites japonicus extract on ovalbumin-induced airway inflammation in an asthmatic mouse model. J. Ethnopharmacol. 2011, 133, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Sok, D.E.; Oh, S.H.; Kim, Y.B.; Kang, H.G.; Kim, M.R. Neuroprotection by extract of Petasites japonicus leaves, a traditional vegetable, against oxidative stress in brain of mice challenged with kainic acid. Eur. J. Nutr. 2006, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Student, A.K.; Hsu, R.Y.; Lane, M.D. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J. Biol. Chem. 1980, 255, 4745–4750. [Google Scholar]
- Zebisch, K.; Voigt, V.; Wabitsch, M.; Brandsch, M. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem. 2012, 425, 88–90. [Google Scholar] [CrossRef]
- Kuroyanagi, K.; Kang, M.S.; Goto, T.; Hirai, S.; Ohyama, K.; Kusudo, T.; Yu, R.; Yano, M.; Sasaki, T.; Takahashi, N.; et al. Citrus auraptene acts as an agonist for PPARs and enhances adiponectin production and MCP-1 reduction in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2008, 366, 219–225. [Google Scholar] [CrossRef]
- Ramirez-Zacarias, J.L.; Castro-Munozledo, F.; Kuri-Harcuch, W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 1992, 97, 493–497. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, J.B.; Cho, S.M.; Chung, M.N.; Lee, Y.M.; Chu, S.M.; Che, J.H.; Kim, S.N.; Kim, S.Y.; Cho, Y.S.; et al. Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem. 2012, 130, 966–972. [Google Scholar] [CrossRef]
- Sartopy, P.; Loskutoff, D.J. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2003, 100, 7265–7270. [Google Scholar] [CrossRef]
- Clifford, M.N.; Kirkpatrick, J.; Kuhnert, N.; Roozendaal, H.; Salgado, P.R. LC-MSn analysis of the cis- isomers of chlorogenic acids. Food Chem. 2008, 106, 379–385. [Google Scholar] [CrossRef]
- Jaiswal, R.; Patras, M.A.; Eravuchira, P.J.; Kuhnert, N. Profile and characterization of the chlorogenic acids in green robusta coffee beans by LC-MSn: Identification of seven new classes of compounds. J. Agric. Food Chem. 2010, 58, 8722–8737. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Wang, H.; Lan, Y.; Chen, S. Simultaneous qualitative and quantitative analysis of phenolic acids and flavonoids for the quality control of Apocynum venetum L. leaves by HPLC-DAD-ESI-IT-TOF-MS and HPLC-DAD. J. Pharm. Biomed. Anal. 2013, 85, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.Y.; Desta, K.T.; Saralamma, V.V.G.; Lee, S.J.; Lee, S.J.; Kim, S.M.; Paramanantham, A.; Lee, H.J.; Kim, Y.H.; Shin, H.C.; et al. LC-MS/MS characterization, anti-inflammatory effects and antioxidant activtiies of polyphenols from different tissues of Korean Petasities japonicus (Meowi). Biomed. Chromatogr. 2017, 31, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar]
- Chuluyan, H.E.; Lang, B.J.; Yoshimura, T.; Kenney, J.S.; Issekutz, A.C. Chemokine production and adhesion molecule expression by neural cells exposed to IL-1, TNF alpha and interferon gamma. Life Sci. 1998, 63, 1939–1952. [Google Scholar] [CrossRef]
- Pollack, R.M.; Donath, M.Y.; LeRoith, D.; Leibowitz, G. Anti-inflammatory agents in the treatment of diabetes and its vascular complications. Diabetes care 2016, 39, S244–S252. [Google Scholar] [CrossRef]
- Goto, T.; Lee, J.Y.; Teraminami, A.; Kim, Y.I.; Hirai, S.; Uemura, T.; Inoue, H.; Takahashi, N.; Kawada, T. Activation of proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J. Lipid Res. 2011, 52, 873–884. [Google Scholar] [CrossRef]
- Watanabe, T.; Hata, K.; Hiwatashi, K.; Hori, K.; Suzuki, N.; Itoh, H. Suppression of murine preadipocyte differentiation and reduction of visceral fat accumulation by a Petasites japonicus ethanol extract in mice fed a high-fat diet. Biosci. Biotechnol. Biochem. 2010, 74, 499–503. [Google Scholar] [CrossRef]
- Darlington, G.J.; Ross, S.E.; MacDougald, O.A. The role of C/EBP genes in adipocyte differentiation. J. Biol. Chem. 1998, 273, 30057–30060. [Google Scholar] [CrossRef]
- Asano, H.; Kanamori, Y.; Higurashi, S.; Nara, T.; Kato, K.; Matsui, T.; Funaba, M. Induction of beige-like adipocytes in 3T3-L1 cells. J. Vet. Med Sci. 2014, 76, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.J.; Vicario, P.P.; Thompson, G.M.; Candelore, M.R.; Doebber, T.W.; Ventre, J.; Wu, M.S.; Meurer, R.; Forrest, M.J.; Conner, M.W.; et al. Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology 1998, 139, 4920–4927. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.D.; Walkey, C.J.; Puigserver, P.; Spiegelman, B.M. Transcriptional regulation of adipogenesis. Genes Dev. 2000, 14, 1293–1307. [Google Scholar] [PubMed]
- Yoon, M.J.; Lee, G.Y.; Chung, J.J.; Ahn, Y.H.; Hong, S.H.; Kim, J.B. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 2006, 55, 2562–2570. [Google Scholar] [CrossRef]
- Shimoda, H.; Tanaka, J.; Yamada, E.; Moorikawa, T.; Kasajima, N.; Yoshikawa, M. Anti type I allergic property of Japanese butterbur extract and its mast cell degranulation inhibitory ingredients. J. Agric. Food Chem. 2006, 54, 2915–2920. [Google Scholar] [CrossRef]
- Watanabe, S.; Hasihmoto, K.; Tazaki, H.; Iwamoto, Y.; Shinohara, N.; Satoh, K.; Sakagami, H. Radical scavanging activity and inhibition of macrophage NO production by fukinolic acid, a main phenolic contituent in Japanese butterbur (Petasites japonicus). Food Sci. Technol. Res. 2007, 13, 366–371. [Google Scholar] [CrossRef]
- Sakumura, S.; Yoshihara, T.; Toyoda, K. The constituents of Petasites japonicus: Structures of fukiic acid and fukinolic acid. Agricuural Biol. Chem. 1973, 37, 1915–1921. [Google Scholar] [CrossRef][Green Version]
Peak no. | Compound Name | RT (min) | DAD λmax (nm) | Formula [M+H]+ | ESI(+)-QToF/MS (Experimental Ions, m/z) | Content (mg/ 100 g DW) | |
---|---|---|---|---|---|---|---|
Exp. Mass [M+H]+ | Adducts and Fragmentation (m/z) | ||||||
Phenolic acid | |||||||
2 b | caffeic acid | 16.63 | 240sh,295sh,323 | C9H9O4 | 181.0727 | 163[M+H-H2O]+, 145[M+H-2H2O]+, 135[M+H-H2O-CO]+ | 24.4 ± 0.3 |
1b | 3-O-caffeoylquinic acid (neochlorogenic acid) | 10.73 | 240sh,295sh,324 | C16H19O9 | 355.0504 | 393[M+K]+, 377[M+Na]+, 337[M+H-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 10.5 ± 0.2 |
3b | 5-O-caffeoylquinic acid (chlorogenic acid) | 17.65 | 242sh,299sh,325 | C16H19O9 | 355.0504 | 393[M+K]+, 377[M+Na]+, 337[M+H-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 299.5 ± 20.3 |
4b | 4-O-caffeoylquinic acid (cryptochlorogenic acid) | 20.48 | 241sh,299sh,324 | C16H19O9 | 355.0504 | 393[M+K]+, 377[M+Na]+, 337[M+H-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135 [Caf+H-H2O-CO]+ | 2.1 ± 0.1 |
5a | cis-5-O-caffeoylquinic acid (cis-chlorogenic acid) | 24.04 | 232,314 | C16H19O9 | 355.0504 | 393[M+K]+, 377[M+Na]+, 337[M+H-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 6.1 ± 0.1 |
6b | 5-O-feruloylquinic acid | 28.96 | 234,296sh,325 | C17H21O9 | 369.0629 | 407[M+K]+, 391[M+Na]+, 351[M+H-H2O]+, 195[Fr+H]+, 177[Fr+H-H2O]+, 149[Fr+H-H2O-CO]+, 145[Fr+H-H2O-CH3OH]+, 134[Fr+H-H2O-CO-CH3]+ | 3.8 ± 0.1 |
7a,b | 5-O-caffeoylquinic acid methyl ester | 35.28 | 244 sh,296sh,326 | C17H21O9 | 369.0629 | 407[M+K]+, 391[M+Na]+, 351[M+H-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O ]+, 135[Caf+H-H2O-CO]+ | 3.2 ± 0.2 |
8 | fukinolic acid | 49.23 | 226 sh,288sh,329 | C20H19O11 | 435.0651 | 473[M+K]+, 457[M+Na]+, 417[M+H-H2O]+, 181[Caf+H]+, 163[Caf+H- H2O ]+, 145[Caf+H-2H2O ]+, 135[Caf+H-H2O-CO]+ | 235.0 ± 4.8 |
9b | 3,4-di-O-caffeoylquinic acid (isochlorogenic acid B) | 52.42 | 241sh,297sh,324 | C25H25O12 | 517.0995 | 555[M+K]+, 539[M+Na]+, 499[M+H-H2O]+, 355[M+H-Caf]+, 337[M+H-Caf-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 60.5 ± 1.5 |
10b | 3,5-di-O-caffeoylquinic acid (isochlorogenic acid A) | 53.53 | 241sh,299sh,326 | C25H25O12 | 517.0995 | 555[M+K]+, 539[M+Na]+, 499[M+H-H2O]+, 355[M+H-Caf]+, 337[M+H-Caf-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 870.1 ± 14.5 |
11a,b | 1,5-di-O-caffeoylquinic acid (isochlorogenic acid A) | 54.49 | 241sh,298sh,325 | C25H25O12 | 517.0995 | 555[M+K]+, 539[M+Na]+, 499[M+H-H2O]+, 355[M+H-Caf]+, 337[M+H-Caf-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 12.2 ± 0.3 |
12a | 3-O-cis-caffeoyl-5-O-caffeoylquinic acid (cis-isochlorogenic acid A) | 57.38 | 243sh,296sh,316 | C25H25O12 | 517.0995 | 555[M+K]+, 539[M+Na]+, 499[M+H-H2O]+, 355[M+H-Caf]+, 337[M+H-Caf-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 5.4 ± 0.4 |
13b | 4,5-di-O-caffeoylquinic acid (isochlorogenic acid C) | 60.69 | 242sh,299sh,326 | C25H25O12 | 517.0995 | 555[M+K]+, 539[M+Na]+, 499[M+H-H2O]+, 355[M+H-Caf]+, 337[M+H-Caf-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 77.8 ± 1.3 |
14a,b | 3,4,5-di-O-caffeoylquinic acid | 75.59 | 243,297sh,326 | C34H31O15 | 679.1178 | 717[M+K]+, 701[M+Na]+, 661[M+H-H2O]+, 517[M+H-Caf]+, 499[M+H-Caf-H2O]+, 337[M+H-2Caf-H2O]+, 181[Caf+H]+, 163[Caf+H-H2O]+, 145[Caf+H-2H2O]+, 135[Caf+H-H2O-CO]+ | 65.8 ± 0.4 |
Total Phenolic acid content | 1676.4 ± 42.0 | ||||||
Flavonoids | |||||||
15a | quercetin 3-O-(6″-O-acetyl) glucoside-7-O-glucoside | 10.11 | 255,268sh, 301sh 345 | C29H33O18 | 669.1531 | 691[M+Na] +, 465[M+H-Ac-Glu] +, 303[M+H-Ac-2Glu] + | 1.0 ± 0.1 |
16a | kaempferol 3-O-(6″-O-acetyl) glucoside-7-O-glucoside | 11.97 | 263,331 | C29H33O17 | 653.1549 | 675[M+Na]+, 491[M+H-Glu]+, 449[M+H-Ac-Glu]+, 287[M+H-Ac-2Glu]+ | 11.2 ± 1.2 |
17a | quercetin 3-O-rutinoside (rutin) | 14.06 | 257,265sh, 297sh, 354 | C27H31O16 | 611.1428 | 633[M+Na] +, 465[M+H-Rham] +, 303[M+H-Rut] + | 3.6 ± 0.5 |
18 | quercetin 3-O-glucoside (isoquercitrin) | 14.57 | 257,265sh, 298sh,356 | C21H21O12 | 465.0908 | 487[M+Na] +, 303[M+H-Glu] + | 36.3 ± 4.2 |
19a | quercetin 3-O-(6″-O-malonyl) glucoside | 15.83 | 238,291sh, 335 | C24H23O15 | 551.0884 | 573[M+Na] +, 303[M+H-Mal-Glu] + | 18.9 ± 2.2 |
20a | kaempferol 3-O-rutinoside (nicotiflorin) | 15.94 | 266,347 | C27H31O15 | 595.1497 | 617[M+Na] +, 449[M+H-Rham] +, 287[M+H-Rut] + | 112.1 ± 13.2 |
21 | kaempferol 3-O-glucoside (astragalin) | 16.57 | 269,342 | C21H21O11 | 449.0971 | 471[M+Na]+, 287[M+H-Glu] + | 132.6 ± 15.7 |
22 | quercetin 3-O-(6″-O-acetyl) glucoside | 17.13 | 257,266sh,296sh, 355 | C23H23O13 | 507.1000 | 529[M+Na] +, 303[M+H-Ac-Glu] + | 140.9 ± 16.4 |
23a | kaempferol 3-O-(6″-O-malonyl) glucoside | 18.30 | 266,298sh,351 | C27H31O15 | 535.0933 | 557[M+Na] +, 287[M+H-Mal-Glu] + | 44.9 ± 5.3 |
24a | quercetin 3-O-(6″-O-caffeoyl) glucoside | 18.83 | 254,267sh,301sh, 334 | C30H27O15 | 627.1175 | 649[M+Na] +, 303[M+H-Caf-Glu] +, 181[Caf+H] +, 163[Caf+H-H2O] +, 145[Caf+H-2H2O] +, 135[Caf+H-H2O-CO] + | 50.8 ± 6.1 |
25 | kaempferol 3-O-(6″-O-acetyl) glucoside | 19.78 | 266,300sh,348 | C23H23O12 | 491.1042 | 513[M+Na] +, 287[M+H-Ac-Glu] + | 429.6 ± 51.4 |
26a | kaempferol 3-O-(6″-O-caffeoyl) glucoside | 21.07 | 267,330 | C27H31O14 | 611.1226 | 633[M+Na]+, 287[M+H-Caf-Glu]+, 181[Caf+H]+, 163[Caf+H-H2O] +, 145[Caf+H-2H2O] +, 135[Caf+H- H2O-CO] + | 82.9 ± 10.8 |
Total flavonoid content | 1064.8 ± 124.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, E.M.; Asamenew, G.; Kim, H.W.; Lee, S.H.; Yoo, S.-M.; Cho, S.-M.; Cha, Y.-S.; Kang, M.-S. Anti-Obesity Effects of Petasites japonicus (Meowi) Ethanol Extract on RAW 264.7 Macrophages and 3T3-L1 Adipocytes and Its Characterization of Polyphenolic Compounds. Nutrients 2020, 12, 1261. https://doi.org/10.3390/nu12051261
Ahn EM, Asamenew G, Kim HW, Lee SH, Yoo S-M, Cho S-M, Cha Y-S, Kang M-S. Anti-Obesity Effects of Petasites japonicus (Meowi) Ethanol Extract on RAW 264.7 Macrophages and 3T3-L1 Adipocytes and Its Characterization of Polyphenolic Compounds. Nutrients. 2020; 12(5):1261. https://doi.org/10.3390/nu12051261
Chicago/Turabian StyleAhn, Eun Mi, Gelila Asamenew, Heon Woong Kim, Sang Hoon Lee, Seon-Mi Yoo, Soo-Muk Cho, Youn-Soo Cha, and Min-Sook Kang. 2020. "Anti-Obesity Effects of Petasites japonicus (Meowi) Ethanol Extract on RAW 264.7 Macrophages and 3T3-L1 Adipocytes and Its Characterization of Polyphenolic Compounds" Nutrients 12, no. 5: 1261. https://doi.org/10.3390/nu12051261
APA StyleAhn, E. M., Asamenew, G., Kim, H. W., Lee, S. H., Yoo, S.-M., Cho, S.-M., Cha, Y.-S., & Kang, M.-S. (2020). Anti-Obesity Effects of Petasites japonicus (Meowi) Ethanol Extract on RAW 264.7 Macrophages and 3T3-L1 Adipocytes and Its Characterization of Polyphenolic Compounds. Nutrients, 12(5), 1261. https://doi.org/10.3390/nu12051261