Does a Supplemental Low-Protein Diet Decrease Mortality and Adverse Events After Commencing Dialysis? A Nationwide Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Patient Selection and Study Design
2.3. Covariates and Study Outcomes
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Follow-Up Outcomes
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cuppari, L.; Meireles, M.S.; Ramos, C.I.; Kamimura, M.A. Subjective global assessment for the diagnosis of protein-energy wasting in nondialysis-dependent chronic kidney disease patients. J. Ren. Nutr. 2014, 24, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, M.; Drüeke, T.B. Introduction: expanding concepts of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 2013, 3, 419. [Google Scholar] [CrossRef] [PubMed]
- Isakova, T.; Nickolas, T.L.; Denburg, M.; Yarlagadda, S.; Weiner, D.E.; Gutiérrez, O.M.; Bansal, V.; Rosas, S.E.; Nigwekar, S.; Yee, J.; et al. KDOQI US Commentary on the 2017 KDIGO Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Am. J. Kidney Dis. 2017, 70, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood. Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Jagadeswaran, D.; Indhumathi, E.; Hemamalini, A.J.; Sivakumar, V.; Soundararajan, P.; Jayakumar, M. Inflammation and nutritional status assessment by malnutrition inflammation score and its outcome in pre-dialysis chronic kidney disease patients. Clin. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, L.; Liabeuf, S.; Oliveira, R.B.; Louvet, L.; Kamel, S.; Lemke, H.D.; Vanholder, R.; Choukroun, G.; Massy, Z.A.; European Uremic Toxin (EUTox) Work Group. Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol. Ther. 2014, 10, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Komaba, H.; Koizumi, M.; Kakuta, T.; Fukagawa, M. Role of uremic toxins and oxidative stress in the development of chronic kidney disease-mineral and bone disorder. J. Ren. Nutr. 2012, 22, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Addis, T.; Lew, W. Diet and Death in Acute Uremia. J. Clin. Investig. 1939, 18, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.S. On the Influence of a Diet with High Protein Content on the Kidney. Can. Med. Assoc. J. 1921, 11, 682–683. [Google Scholar] [PubMed]
- Walser, M. Does dietary therapy have a role in the predialysis patient? Am. J. Clin. Nutr. 1980, 33, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Cianciaruso, B.; Pota, A.; Pisani, A.; Torraca, S.; Annecchini, R.; Lombardi, P.; Capuano, A.; Nazzaro, P.; Bellizzi, V.; Sabbatini, M. Metabolic effects of two low protein diets in chronic kidney disease stage 4–5—A randomized controlled trial. Nephrol. Dial. Transplant. 2008, 23, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Walser, M.; Mitch, W.E.; Maroni, B.J.; Kopple, J.D. Should protein intake be restricted in predialysis patients? Kidney Int. 1999, 55, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Lakatua, J.D.; Ma, J.Z.; Louis, T.A. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am. J. Kidney Dis. 1998, 31, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Alberti, D.; Graziani, G.; Buccianti, G.; Redaelli, B.; Giangrande, A. Prospective, randomised, multicentre trial of effect of protein restriction on progression of chronic renal insufficiency. Lancet 1991, 337, 1299–1304. [Google Scholar] [CrossRef]
- Kidney Disease Outcomes Quality Initiative. Clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2000, 35, S1–S140. [Google Scholar]
- Prakash, S.; Pande, D.P.; Sharma, S.; Sharma, D.; Bal, C.S.; Kulkarni, H. Randomized, double-blind, placebo-controlled trial to evaluate efficacy of ketodiet in predialytic chronic renal failure. J. Ren. Nutr. 2004, 14, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Walser, M.; Lund, P.; Ruderman, N.B.; Coulter, A.W. Synthesis of essential amino acids from their alpha-keto analogues by perfused rat liver and muscle. J. Clin. Investig. 1973, 52, 2865–2877. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.W.; Tungsanga, K.; Walser, M. Effect of the level of dietary protein on the utilization of alpha-ketoisocaproate for protein synthesis. Am. J. Clin. Nutr. 1986, 43, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Walser, M. Ketoacids in the treatment of uremia. Clin. Nephrol. 1975, 3, 180–186. [Google Scholar] [PubMed]
- Teplan, V.; Schück, O.; Votruba, M.; Poledne, R.; Kazdova, L.; Skibova, J.; Malý, J. Metabolic effects of keto acid—Amino acid supplementation in patients with chronic renal insufficiency receiving a low-protein diet and recombinant human erythropoietin—A randomized controlled trial. Wien. Klin. Wochenschr. 2001, 113, 661–669. [Google Scholar]
- Jiang, N.; Qian, J.; Sun, W.; Lin, A.; Cao, L.; Wang, Q.; Ni, Z.; Wan, Y.; Linholm, B.; Axelsson, J. Better preservation of residual renal function in peritoneal dialysis patients treated with a low-protein diet supplemented with keto acids: A prospective, randomized trial. Nephrol. Dial. Transplant. 2009, 24, 2551–2558. [Google Scholar] [CrossRef] [PubMed]
- Mircescu, G.; Gârneaţă, L.; Stancu, S.H.; Căpuşă, C. Effects of a supplemented hypoproteic diet in chronic kidney disease. J. Ren. Nutr. 2007, 17, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Brunori, G.; Viola, B.F.; Parrinello, G.; De Biase, V.; Como, G.; Franco, V.; Garibotto, G.; Zubani, R.; Cancarini, G.C. Efficacy and safety of a very-low-protein diet when postponing dialysis in the elderly: A prospective randomized multicenter controlled study. Am. J. Kidney Dis. 2007, 49, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D.; Levey, A.S.; Greene, T.; Chumlea, W.C.; Gassman, J.J.; Hollinger, D.L.; Maroni, B.J.; Merrill, D.; Scherch, L.K.; Schulman, G.; et al. Effect of dietary protein restriction on nutritional status in the Modification of Diet in Renal Disease Study. Kidney Int. 1997, 52, 778–791. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am. J. Clin. Nutr. 2013, 97, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Kopple, J.D.; Wang, X.; Beck, G.J.; Collins, A.J.; Kusek, J.W.; Greene, T.; Levey, A.S.; Sarnak, M.J. Effect of a very low-protein diet on outcomes: long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 2009, 53, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Hwang, S.J.; Taiwan Society of Nephrology. Incidence, prevalence and mortality trends of dialysis end-stage renal disease in Taiwan from 1990 to 2001: The impact of national health insurance. Nephrol. Dial. Transplant. 2008, 23, 3977–3982. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.S.; Lai, M.S.; Gau, S.S.F.; Wang, S.C.; Tsai, H.J. Concordance between patient self-reports and claims data on clinical diagnoses, medication use, and health system utilization in Taiwan. PLoS ONE 2014, 9, e112257. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.Y.; Chen, C.H.; Li, C.Y.; Lai, M.L. Validating the diagnosis of acute ischemic stroke in a National Health Insurance claims database. J. Formos. Med. Assoc. 2015, 114, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.L.; Lee, C.H.; Chen, P.S.; Li, Y.H.; Lin, S.J.; Yang, Y.H.K. Validation of acute myocardial infarction cases in the national health insurance research database in Taiwan. J. Epidemiol. 2014, 24, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.L.; Kao, Y.H.Y.; Lin, S.J.; Lee, C.H.; Lai, M.L. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol. Drug Saf. 2011, 20, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.L.; Chien, H.C.; Lee, C.H.; Lin, S.J.; Yang, Y.H.K. Validity of in-hospital mortality data among patients with acute myocardial infarction or stroke in National Health Insurance Research Database in Taiwan. Int. J. Cardiol. 2015, 201, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.C.; Wang, I.K.; Wei, C.C.; Lin, C.L.; Tsai, C.T.; Hsia, T.C.; Sung, F.C.; Kao, C.H. The Risk of Septicemia in End-Stage Renal Disease with and without Renal Transplantation: A Propensity-Matched Cohort Study. Medicine 2015, 94, e1437. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.L.; Li, C.Y.; Hsieh, T.H.; Chang, C.M.; Lee, H.C.; Lee, N.Y.; Wu, C.J.; Lee, C.C.; Shih, H.I.; Ko, W.C. Epidemiology, disease spectrum and economic burden of non-typhoidal Salmonella infections in Taiwan, 2006–2008. Epidemiol. Infect. 2012, 140, 2256–2263. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat. 2011, 10, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Normand, S.L.T.; Landrum, M.B.; Guadagnoli, E.; Ayanian, J.Z.; Ryan, T.J.; Cleary, P.D.; McNeil, B.J. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores. J. Clin. Epidemiol. 2001, 54, 387–398. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, M.J.; Fine, J. A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data. Stat. Med. 2011, 30, 1933–1951. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Stat. Med. 2011, 30, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Malvy, D.; Maingourd, C.; Pengloan, J.; Bagros, P.; Nivet, H. Effects of severe protein restriction with ketoanalogues in advanced renal failure. J. Am. Coll. Nutr. 1999, 18, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Yang, Y.W.; Hung, S.C.; Kuo, K.L.; Wu, K.D.; Wu, V.C.; Hsieh, T.C.; National Taiwan University Study Group on Acute Renal Failure. Ketoanalogues supplementation decreases dialysis and mortality risk in patients with anemic advanced chronic kidney disease. PLoS ONE 2017, 12, e0176847. [Google Scholar]
- Bellizzi, V.; Chiodini, P.; Cupisti, A.; Viola, B.F.; Pezzotta, M.; De Nicola, L.; Minutolo, R.; Barsotti, G.; Piccoli, G.B.; Di Iorio, B. Very low-protein diet plus ketoacids in chronic kidney disease and risk of death during end-stage renal disease: A historical cohort controlled study. Nephrol. Dial. Transplant. 2015, 30, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, J.; López-Hellı́n, J.; Planas, M.; Sabı́n, P.; Sanpedro, F.; Castro, F.; Esteban, R.; Guardia, J. Normal protein diet for episodic hepatic encephalopathy: Results of a randomized study. J. Hepatol. 2004, 41, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Izumi, N.; Charlton, M.R.; Sata, M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 2011, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, H.; Nakazawa, T.; Kutsukake, S.; Yamazaki, Y.; Aoki, I.; Nakano, S.; Asaba, N.; Minamino, T.; Takada, J.; Tanaka, Y.; et al. The efficacy of nocturnal administration of branched-chain amino acid granules to improve quality of life in patients with cirrhosis. J. Gastroenterol. 2013, 48, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Di Iorio, B.R.; De Nicola, L.; Minutolo, R.; Zamboli, P.; Trucillo, P.; Catapano, F.; Cristofano, C.; Scalfi, L.; Conte, G. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 2007, 71, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Teplan, V.; Schück, O.; Knotek, A.; Hajný, J.; Horáčková, M.; Kvapil, M. Enhanced metabolic effect of erythropoietin and keto acids in CRF patients on low-protein diet: Czech multicenter study. Am. J. Kidney Dis. 2003, 41, S26–S30. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, P.; Combe, C.; Rigalleau, V.; Vendrely, B.; Aparicio, M. Restricted protein diet is associated with decrease in proteinuria: Consequences on the progression of renal failure. J. Ren. Nutr. 2007, 17, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.; Fouque, D.; Laville, M.; Zech, P. Effects of low-protein diet supplemented with ketoacids on plasma lipids in adult chronic renal failure. Miner. Electrolyte. Metab. 1996, 22, 143–146. [Google Scholar] [PubMed]
- Lameire, N.; Van Biesen, W.; Vanholder, R. Did 20 years of technological innovations in hemodialysis contribute to better patient outcomes? Clin. J. Am. Soc. Nephrol. 2009, 4, S30–S40. [Google Scholar] [CrossRef] [PubMed]
- Hiroshige, K.; Sonta, T.; Suda, T.; Kanegae, K.; Ohtani, A. Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol. Dial. Transplant. 2001, 16, 1856–1862. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, M.; Bellizzi, V.; Chauveau, P.; Cupisti, A.; Ecder, T.; Fouque, D.; Garneata, L.; Lin, S.; Mitch, W.E.; Teplan, V.; et al. Protein-restricted diets plus keto/amino acids—A valid therapeutic approach for chronic kidney disease patients. J. Ren. Nutr. 2012, 22, S1–S21. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Kim, D.K.; Park, J.T.; Kang, E.W.; Yoo, T.H.; Kim, B.S.; Choi, K.H.; Lee, H.Y.; Han, D.S.; Shin, S.K. Influence of ketoanalogs supplementation on the progression in chronic kidney disease patients who had training on low-protein diet. Nephrology 2009, 14, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Ventrella, F.; Capizzi, I.; Vigotti, F.N.; Mongilardi, E.; Grassi, G.; Loi, V.; Cabiddu, G.; Avagnina, P.; Versino, E. Low-Protein Diets in Diabetic Chronic Kidney Disease (CKD) Patients: Are They Feasible and Worth the Effort? Nutrients 2016, 8, 649. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Gul, A.; Sarnak, M.J. Cardiovascular risk factors in chronic kidney disease. Kidney Int. 2005, 68, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, H.; Wakino, S.; Hayashi, K.; Inamoto, H.; Itoh, H. Serum creatinine and albumin decline predict the contraction of nosocomial aspiration pneumonia in patients undergoing hemodialysis. Ther. Apher. Dial. 2014, 18, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Van Zuijdewijn, C.L.D.R.; ter Wee, P.M.; Chapdelaine, I.; Bots, M.L.; Blankestijn, P.J.; van den Dorpel, M.A.; Nubé, M.J.; Grooteman, M.P. A Comparison of 8 Nutrition-Related Tests to Predict Mortality in Hemodialysis Patients. J. Ren. Nutr. 2015, 25, 412–419. [Google Scholar] [CrossRef] [PubMed]
Before Matching | After Matching | |||||
---|---|---|---|---|---|---|
Characteristic | sLPD (n = 2634) | Non-sLPD (n = 106,194) | ASMD | sLPD (n = 2607) | Non-sLPD (n = 10,428) | ASMD |
Age | 60.9 ± 12.9 | 62.1 ± 13.6 | 0.09 | 60.9 ± 12.9 | 61.1 ± 13.9 | 0.01 |
Age ≥ 65 years, n (%) | 1074 (40.8) | 49,145 (46.3) | 0.11 | 1068 (41.0) | 4304 (41.3) | 0.01 |
Male gender, n (%) | 1343 (51.0) | 54,473 (51.3) | 0.01 | 1331 (51.1) | 5359 (51.4) | 0.01 |
Comorbidity in the previous year, n (%) | ||||||
Hypertension | 2304 (87.5) | 93,064 (87.6) | 0.00 | 2279 (87.4) | 9196 (88.2) | 0.02 |
Diabetes mellitus | 1074 (40.8) | 62,480 (58.8) | 0.37 | 1073 (41.2) | 4265 (40.9) | 0.01 |
Dyslipidemia | 653 (24.8) | 28,077 (26.4) | 0.04 | 648 (24.9) | 2529 (24.3) | 0.01 |
Atrial fibrillation | 52 (2.0) | 3249 (3.1) | 0.07 | 52 (2.0) | 190 (1.8) | 0.01 |
Peripheral arterial disease | 70 (2.7) | 3871 (3.6) | 0.05 | 70 (2.7) | 292 (2.8) | 0.01 |
Liver cirrhosis | 60 (2.3) | 4285 (4.0) | 0.10 | 60 (2.3) | 219 (2.1) | 0.01 |
Dementia | 58 (2.2) | 3191 (3.0) | 0.05 | 58 (2.2) | 226 (2.2) | 0.00 |
Charlson Comorbidity Index score | 3.7 ± 1.8 | 4.6 ± 2.0 | 0.47 | 3.8 ± 1.8 | 3.7 ± 1.7 | 0.02 |
Hospitalization history, n (%) | ||||||
Heart failure | 361 (13.7) | 27,567 (26.0) | 0.31 | 361 (13.8) | 1415 (13.6) | 0.01 |
Stroke | 278 (10.6) | 18,395 (17.3) | 0.19 | 278 (10.7) | 1079 (10.3) | 0.01 |
Myocardial infarction | 100 (3.8) | 7378 (6.9) | 0.14 | 100 (3.8) | 402 (3.9) | 0.01 |
Infection-related hospitalization | 1230 (46.7) | 64,470 (60.7) | 0.28 | 1223 (46.9) | 4971 (47.7) | 0.02 |
Initial dialysis type, n (%) | ||||||
Hemodialysis | 2028 (77.0) | 94,647 (89.1) | 0.33 | 2015 (77.3) | 8115 (77.8) | 0.01 |
Peritoneal dialysis | 606 (23.0) | 11,547 (10.9) | 0.33 | 592 (22.7) | 2313 (22.2) | 0.01 |
Medication, n (%) | ||||||
Aspirin/Clopidogrel | 573 (21.8) | 29,267 (27.6) | 0.13 | 570 (21.9) | 2306 (22.1) | 0.00 |
ACEI/ARB | 1314 (49.9) | 48,098 (45.3) | 0.09 | 1300 (49.9) | 5142 (49.3) | 0.01 |
Other antihypertensive agents | 2147 (81.5) | 82,373 (77.6) | 0.10 | 2122 (81.4) | 8510 (81.6) | 0.01 |
Loop diuretics | 1341 (50.9) | 58,310 (54.9) | 0.08 | 1334 (51.2) | 5415 (51.9) | 0.01 |
K-sparing diuretics | 40 (1.5) | 2387 (2.2) | 0.05 | 40 (1.5) | 178 (1.7) | 0.02 |
OHA | 606 (23.0) | 34,346 (32.3) | 0.21 | 606 (23.2) | 2441 (23.4) | 0.00 |
Insulin | 403 (15.3) | 23,087 (21.7) | 0.17 | 403 (15.5) | 1592 (15.3) | 0.01 |
PPI | 377 (14.3) | 16,756 (15.8) | 0.04 | 374 (14.3) | 1520 (14.6) | 0.01 |
NSAID (including COX2) | 297 (11.3) | 15,193 (14.3) | 0.09 | 297 (11.4) | 1184 (11.4) | 0.00 |
Statin | 548 (20.8) | 22,687 (21.4) | 0.01 | 543 (20.8) | 2253 (21.6) | 0.02 |
Fibrate or Gemfibrozil | 65 (2.5) | 4352 (4.1) | 0.09 | 65 (2.5) | 252 (2.4) | 0.01 |
Iron supplement | 639 (24.3) | 17,960 (16.9) | 0.18 | 634 (24.3) | 2584 (24.8) | 0.01 |
Pentoxifylline | 666 (25.3) | 11,794 (11.1) | 0.37 | 644 (24.7) | 2533 (24.3) | 0.01 |
Vitamin D therapy | 485 (18.4) | 10,066 (9.5) | 0.26 | 472 (18.1) | 1800 (17.3) | 0.02 |
Sodium bicarbonate | 640 (24.3) | 7686 (7.2) | 0.48 | 615 (23.6) | 2296 (22.0) | 0.04 |
Calcium supplementation | 1058 (40.2) | 36,447 (34.3) | 0.12 | 1041 (39.9) | 4122 (39.5) | 0.01 |
Steroid | 256 (9.7) | 8463 (8.0) | 0.06 | 253 (9.7) | 1057 (10.1) | 0.01 |
Follow-up (years) | 3.3 ± 2.8 | 4.0 ± 3.3 | 0.24 | 3.3 ± 2.8 | 3.0 ± 2.7 | 0.09 |
Event No. (%) | sLPD vs Non-sLPD | |||
---|---|---|---|---|
Outcome # | sLPD (n = 2607) | Non-sLPD (n = 10,428) | HR (95% CI) | p-Value |
All-cause mortality | 603 (23.1) | 2877 (27.6) | 0.77 (0.70–0.84) | <0.001 |
Cardiovascular composite adverse event § | 500 (19.2) | 2240 (21.5) | 0.86 (0.78–0.94) | 0.001 |
Acute myocardial infarction | 87 (3.3) | 327 (3.1) | 1.05 (0.83–1.33) | 0.695 |
Acute ischemic stroke | 114 (4.4) | 525 (5.0) | 0.86 (0.70–1.05) | 0.135 |
Intracerebral hemorrhage | 34 (1.3) | 181 (1.7) | 0.74 (0.51–1.07) | 0.107 |
Heart failure | 90 (3.5) | 418 (4.0) | 0.85 (0.68–1.07) | 0.156 |
Cardiovascular death | 310 (11.9) | 1366 (13.1) | 0.88 (0.78–0.99) | 0.039 |
Infection-related hospitalization | 1009 (38.7) | 4479 (43.0) | 0.83 (0.78–0.89) | <0.001 |
Infection death | 259 (9.9) | 1308 (12.5) | 0.76 (0.67–0.87) | <0.001 |
Sepsis-related hospitalization | 415 (15.9) | 2188 (21.0) | 0.71 (0.64–0.79) | <0.001 |
Sepsis death | 171 (6.6) | 890 (8.5) | 0.74 (0.63–0.87) | <0.001 |
Disability | 788 (30.2) | 3274 (31.4) | 0.94 (0.87–1.01) | 0.098 |
PRBC (admission) | 1451 (55.7) | 6004 (57.6) | 0.91 (0.86–0.96) | 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, C.-L.; Tu, K.-H.; Lin, M.-S.; Chang, S.-W.; Fan, P.-C.; Hsiao, C.-C.; Chen, C.-Y.; Hsu, H.-H.; Tian, Y.-C.; Chang, C.-H. Does a Supplemental Low-Protein Diet Decrease Mortality and Adverse Events After Commencing Dialysis? A Nationwide Cohort Study. Nutrients 2018, 10, 1035. https://doi.org/10.3390/nu10081035
Yen C-L, Tu K-H, Lin M-S, Chang S-W, Fan P-C, Hsiao C-C, Chen C-Y, Hsu H-H, Tian Y-C, Chang C-H. Does a Supplemental Low-Protein Diet Decrease Mortality and Adverse Events After Commencing Dialysis? A Nationwide Cohort Study. Nutrients. 2018; 10(8):1035. https://doi.org/10.3390/nu10081035
Chicago/Turabian StyleYen, Chieh-Li, Kun-Hua Tu, Ming-Shyan Lin, Su-Wei Chang, Pei-Chun Fan, Ching-Chung Hsiao, Chao-Yu Chen, Hsiang-Hao Hsu, Ya-Chun Tian, and Chih-Hsiang Chang. 2018. "Does a Supplemental Low-Protein Diet Decrease Mortality and Adverse Events After Commencing Dialysis? A Nationwide Cohort Study" Nutrients 10, no. 8: 1035. https://doi.org/10.3390/nu10081035
APA StyleYen, C.-L., Tu, K.-H., Lin, M.-S., Chang, S.-W., Fan, P.-C., Hsiao, C.-C., Chen, C.-Y., Hsu, H.-H., Tian, Y.-C., & Chang, C.-H. (2018). Does a Supplemental Low-Protein Diet Decrease Mortality and Adverse Events After Commencing Dialysis? A Nationwide Cohort Study. Nutrients, 10(8), 1035. https://doi.org/10.3390/nu10081035