Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters
Abstract
:1. Introduction
2. Background
3. Calcium-Rich Mineral Waters and Bone Metabolism
4. Case Report
4.1. Subjects and Methods
4.2. Statistical Analysis
4.3. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PTH | parathyroid hormone |
1,25(OH)2D | 1,25-dihydroxyvitamin D |
FGF23 | Fibroblast Growth Factor 23 |
VDR | vitamin D receptor |
CTX | type 1 collagen cross-linked C-telopeptide |
BALP | bone alkaline phosphatase |
References
- Bronner, F. Extracellular and intracellular regulation of calcium homeostasis. Sci. World J. 2001, 1, 919–925. [Google Scholar] [CrossRef] [PubMed]
- Bootman, M.D.; Collins, T.J.; Peppiatt, C.M.; Prothero, L.S.; MacKenzie, L.; de Smet, P.; Travers, M.; Tovey, S.C.; Seo, J.T.; Berridge, M.J.; et al. Calcium signalling—An overview. Semin. Cell. Dev. Biol. 2001, 12, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Khundmiri, S.J.; Murray, R.D.; Lederer, E. PTH and Vitamin D. Compr. Physiol. 2016, 6, 561–601. [Google Scholar] [CrossRef] [PubMed]
- Coulston, A.M.; Boushey, C.J.; Ferruzzi, M.G. Nutrition in the Prevention and Treatment of Disease, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; ISBN 978-0-12-391884-0. [Google Scholar]
- Wehrli, F.W. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J. Magn. Reson. Imaging 2007, 25, 390–409. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Datta, H.K.; Ng, W.F.; Walker, J.A.; Tuck, S.P.; Varanasi, S.S. The cell biology of bone metabolism. J. Clin. Pathol. 2008, 61, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Florencio-Silva, R.; Sasso, G.R.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef] [PubMed]
- Khosla, S.; Oursler, M.J.; Monroe, D.G. Estrogen and the skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef][Green Version]
- Adams, D.J.; Rowe, D.W.; Ackert-Bicknell, C.L. Genetics of aging bone. Mamm. Genome 2016, 27, 367–380. [Google Scholar] [CrossRef][Green Version]
- Sobacchi, C.; Schulz, A.; Coxon, F.P.; Villa, A.; Helfrich, M.H. Osteopetrosis: Genetics, treatment and new insights into osteoclast function. Nat. Rev. Endocrinol. 2013, 9, 522–536. [Google Scholar] [CrossRef]
- Carmeliet, G.; Dermauw, V.; Bouillon, R. Vitamin D signaling in calcium and bone homeostasis: A delicate balance. Best Pract. Res. Clin. Endocrinol. Metable. 2015, 29, 621–631. [Google Scholar] [CrossRef]
- Felsenfeld, A.; Rodriguez, M.; Levine, B. New insights in regulation of calcium homeostasis. Curr. Opin. Nephrol. Hypertens. 2013, 22, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R. Nutritional aspects of bone health. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Viljakainen, H.T. Factors influencing bone mass accrual: Focus on nutritional aspects. Proc. Nutr. Soc. 2016, 75, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Higgs, J.; Derbyshire, E.; Styles, K. Nutrition and osteoporosis prevention for the orthopaedic surgeon: A wholefoods approach. EFORT Open Rev. 2017, 2, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intakes (DRIs): Elements Food and Nutrition Board, Institute of Medicine, National Academies. Available online: https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx (accessed on 4 December 2018).
- Società Italiana di Nutrizione Umana (SINU). Livelli di Assunzione di Riferimento di Nutrienti ed Energia per la Popolazione Italiana (LARN))—IV Revision; SICS Ed.: Milan, Italy, 2014. [Google Scholar]
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA). Linee Guida per una Sana Alimentazione Italiana—Linea Guida n 5: Bevi Ogni Giorno Acqua in Abbondanza; Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione (INRAN): Rome, Italy, rev. 2003.
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients Food and Nutrition Board; Institute of Medicine, National Academies: Washington, DC, USA, 2005.
- European Parliament, Council of the European Union. Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the Exploitation and Marketing of Natural Mineral Waters; Official Journal of the European Union: Bruxelles, Belgium, 2009. [Google Scholar]
- Bacciottini, L.; Tanini, A.; Falchetti, A.; Masi, L.; Franceschelli, F.; Pampaloni, B.; Giorgi, G.; Brandi, M.L. Calcium bioavailability from a calcium-rich mineral water, with some observations on method. J. Clin. Gastroenterol. 2004, 38, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Dowell, M.S. Absorbability of the calcium in a high-calcium mineral water. Osteoporos. Int. 1994, 4, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Halpern, G.M.; van de Water, J.; Delabroise, A.M.; Keen, C.L.; Gershwin, M.E. Comparative uptake of calcium from milk and a calcium-rich mineral water in lactose intolerant adults: Implications for treatment of osteoporosis. Am. J. Prev. Med. 1991, 7, 379–383. [Google Scholar] [CrossRef]
- Couzy, F.; Kastenmayer, P.; Vigo, M.; Clough, J.; Munoz-Box, R.; Barclay, D.V. Calcium bioavailability from a calcium- and sulphate-rich mineral water, compared with milk, in young adult women. Am. J. Clin. Nutr. 1995, 62, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Van Dokkum, W.; de la Gueronniere, V.; Schaafsma, G.; Bouley, C.; Luten, J.; Latgé, C. Bioavailability of calcium of fresh cheeses, enteral food and mineral water: A study with stable calcium isotopes in young adult women. Br. J. Nutr. 1996, 75, 893–903. [Google Scholar] [CrossRef] [PubMed]
- Wynckel, A.; Hanrotel, C.; Wuillai, A.; Charnard, J. Intestinal calcium absorption from mineral water. Miner. Electrolyte Metab. 1997, 23, 88–92. [Google Scholar] [PubMed]
- Greupner, T.; Schneider, I.; Hahn, A. Calcium bioavailability from mineral waters with different mineralization in comparison to milk and a supplement. J. Am. Coll. Nutr. 2017, 36, 386–390. [Google Scholar] [CrossRef]
- Brandolini, M.; Guéguen, L.; Boirie, Y.; Rousset, P.; Bertière, M.C.; Beaufrère, B. Higher calcium urinary loss induced by a calcium sulphate-rich mineral water intake than by milk in young women. Br. J. Nutr. 2005, 93, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Guillemant, J.; Le, H.T.; Guillemant, S.; Delabroise, A.M.; Arnaud, M.J. Acute effects induced by a calcium-rich mineral water on calcium metabolism and on parathyroid function. Osteoporos. Int. 1997, 7, 85–86. [Google Scholar] [CrossRef]
- Bohmer, H.; Müller, H.; Resch, K.L. Calcium supplementation with calcium-rich mineral waters: A systematic review and meta-analysis of its bioavailability. Osteoporos. Int. 2000, 11, 938–943. [Google Scholar] [CrossRef]
- Heaney, R.P. Absorbability and utility of calcium in mineral waters. Am. J. Clin. Nutr. 2006, 84, 371–374. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wynn, E.; Raetz, E.; Burckhardt, P. The composition of mineral waters sourced from Europe and North America in respect to bone health: Composition of mineral water optimal for bone. Br. J. Nutr. 2009, 101, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L.; Hannan, M.T.; Kiel, D.P. The acid-base hypothesis: Diet and bone in the Framingham Osteoporosis Study. Eur. J. Nutr. 2001, 40, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Meunier, P.J.; Jenvrin, C.; Munoz, F.; de la Gueronnière, V.; Garnero, P.; Menz, M. Consumption of a high calcium mineral water lowers biochemical indices of bone remodeling in postmenopausal women with low calcium intake. Osteoporos. Int. 2005, 16, 1203–1209. [Google Scholar] [CrossRef]
- Wynn, E.; Krieg, M.A.; Aeschlimann, J.M.; Burckhardt, P. Alkaline mineral water lowers bone resorption even in calcium sufficiency: Alkaline mineral water and bone metabolism. Bone 2009, 44, 120–124. [Google Scholar] [CrossRef]
- Cepollaro, C.; Orlandi, G.; Gonnelli, S.; Ferrucci, G.; Arditti, J.C.; Borracelli, D.; Toti, E.; Gennari, C. Effect of calcium supplementation as a high-calcium mineral water on bone loss in early postmenopausal women. Calcif. Tissue Int. 1996, 59, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Costi, D.; Calcaterra, P.G.; Iori, N.; Vourna, S.; Nappi, G.; Passeri, M. Importance of bioavailable calcium drinking water for the maintenance of bone mass in post-menopausal women. J. Endocrinol. Investig. 1999, 22, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Aptel, I.; Cance-Rouzaud, A.; Grandjean, H. Association between calcium ingested from drinking water and femoral bone density in elderly women: Evidence from the EPIDOS cohort. J. Bone Miner. Res. 1999, 14, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Guillemant, J.; Le, H.T.; Accarie, C.; du Montcel, S.T.; Delabroise, A.M.; Arnaud, M.J.; Guillemant, S. Mineral water as a source of dietary calcium: Acute effects on parathyroid function and bone resorption in young men. Am. J. Clin. Nutr. 2000, 71, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Calcium Calculator. Available online: www.iofbonehealth.org/calcium-calculator (accessed on 26 January 2017).
- Massey, L.K.; Whiting, S.J. Dietary salt, urinary calcium, and bone loss. J. Bone Miner. Res. 1996, 11, 731–736. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.O.; Abrams, S.A.; Stuff, J.E.; Liang, L.K.; Welch, T.R. Variables related to urinary calcium excretion in young girls. J. Pediatr. Gastroenterol. Nutr. 1996, 23, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, P. The effect of the alkali load of mineral water on bone metabolism: Interventional studies. J. Nutr. 2008, 138, 435S–437S. [Google Scholar] [CrossRef] [PubMed]
Life Stage Group | RDA/AI * (mg/day) |
---|---|
Infants | |
0 to 6 months | * 200 |
6 to 12 months | * 260 |
Children | |
1–3 years | 700 |
4–8 years | 1000 |
Males/Females | |
9–13 years | 1300 |
14–18 years | 1300 |
19–30 years | 1000 |
31–50 years | 1000 |
51–70 years (males) | 1000 |
51–70 years (females) | 1200 |
>70 years | 1200 |
Pregnancy/Breastfeeding | |
14–18 years | 1300 |
19–50 years | 1000 |
Scientific Article | Year of Publication | Number of Recruited Subjects | Aim of the Study | Endpoint |
---|---|---|---|---|
Halpern et al. [24] | 1991 | 15 adult lactose-intolerant men | Bioavailability of calcium: calcium-rich water vs. milk | Tracer technique with calcium isotope |
Heaney and Dowell [23] | 1994 | 18 healthy women | Bioavailability of calcium: calcium-rich water vs. milk | Tracer technique with calcium isotope |
Couzy et al. [25] | 1995 | 9 healthy young adult women | Bioavailability of calcium: calcium- and sulphate-rich water vs. milk | Tracer technique with calcium isotope |
Van Dokkum et al. [26] | 1996 | 12 healthy young adult women | Bioavailability of calcium: calcium-rich water vs. dairy products | Tracer technique with calcium isotope |
Cepollaro et al. [37] | 1996 | 45 early postmenopausal women | Effects of calcium from calcium-rich water on densitometric parameters | Distal radius DXA |
Wynckel et al. [27] | 1997 | 12 students (8 males and 4 females) | Intestinal absorption of calcium from mineral waters with different calcium content | Tracer technique with calcium isotope |
Costi et al. [38] | 1999 | 255 pre- and post-menopausal women | Effects of calcium from calcium-rich water on densitometric parameters | Lumbar DXA |
Aptel et al. [39] | 1999 | Data collection of 4434 women over 75 years from EPIDOS trial | Effects of calcium from drinking water on densitometric parameters | Femoral DXA |
Guillemant et al. [40] | 2000 | 12 healthy young male students | Acute effects (within 4 h) of calcium from calcium-rich water on biochemical parameters of bone metabolism | PTH, serum and urinary CTX |
Bacciottini et al. [22] | 2004 | 9 adult men + 9 pre-menopausal women + 9 post-menopausal women | Bioavailability of calcium: calcium-rich water vs. milk | Tracer technique with calcium isotope |
Brandolini et al. [29] | 2005 | 37 healthy young women | Bioavailability of calcium: calcium- and sulphate-rich water vs. milk | Urinary calcium |
Meunier et al. [35] | 2005 | 152 postmenopausal women with low dietary calcium intake | Effects of calcium from calcium-rich water on biochemical parameters of bone metabolism during a 6-month study period | PTH and biochemical markers of bone remodeling |
Wynn et al. [36] | 2009 | 30 healthy premenopausal women with sufficient dietary calcium intake | Effects of calcium-rich water on biochemical parameters of bone metabolism during a 4-week study period: calcium-rich alkaline water vs. calcium-rich acid water | PTH and serum CTX |
Greupner et al. [28] | 2017 | 21 healthy men and women | Bioavailability of calcium: 3 calcium-rich waters with different mineral content vs. milk vs. a calcium supplement | Serum and urinary calcium |
Uliveto Water | B Water | |
---|---|---|
Fixed Residue at 180 °C (mg/L) | 745 | 174.1 |
pH | 5.8 | 7.56 |
Bicarbonate (mg/L) | 570 | 182.1 |
Chloride (mg/L) | 80 | 6.78 |
Litium (mg/L) | 0.18 | - |
Nitrate (mg/L) | 7.1 | 1.10 |
Sodium (mg/L) | 67 | 4.13 |
Silicon (mg/L) | 8.9 | 4.17 |
Calcium (mg/L) | 173 | 57.63 |
Fluoride (mg/l) | 1 | 0.13 |
Magnesium (mg/l) | 25 | 3.23 |
Potassium (mg/L) | 7.3 | 3.23 |
Sulphate (mg/L) | 100 | 6.75 |
Carbon Dioxide (CO2) (mg/L) | 1485 | 8.08 |
Strontium (mg/L) | - | 0.23 |
V1 | V2 | p | V3 | V4 | p | |
---|---|---|---|---|---|---|
Serum Calcium (mg/dL) | 8.97 ± 0.35 | 8.94 ± 0.34 | 0.496 | 8.79 ± 0.36 | 8.93 ± 0.38 | 0.128 |
Serum Phosphate (mg/dL) | 3.45 ± 0.48 | 3.51 ± 0.39 | 0.434 | 3.54 ± 0.91 | 3.47 ± 0.50 | 0.669 |
Serum Magnesium (mg/dL) | 2.21 ± 0.13 | 2.17 ± 0.11 | 0.280 | 2.20 ± 0.20 | 2.19 ± 0.13 | 0.875 |
Serum Total Proteins (g/dL) | 7.40 ± 0.32 | 7.31 ± 0.35 | 0.212 | 7.27 ± 0.29 | 7.31 ± 0.27 | 0.323 |
Serum PTH (pmol/L) | 5.71 ± 3.04 | 5.67 ± 1.98 | 0.956 | 5.54 ± 2.09 | 5.41 ± 1.83 | 0.720 |
Serum 25(OH)vitaminD (ng/mL) | 21.74 ± 7.98 | 21.95 ± 6.92 | 0.838 | 19.84 ± 6.32 | 20.97 ± 4.94 | 0.299 |
Serum BALP (mcg/L) | 15.31 ± 4.20 | 15.60 ± 4.16 | 0.149 | 14.93 ± 4.14 | 14.75 ± 4.53 | 0.697 |
Serum Beta-CTX (ng/mL) | 0.310 ± 0.121 | 0.319 ± 0.120 | 0.630 | 0.335 ± 0.132 | 0.337 ± 0.127 | 0.912 |
Urinary Phosphate (mg/24 h) | 690.31 ± 427.30 | 600.18 ± 485.04 | 0.580 | 565.78 ± 307.40 | 531.14 ± 321.65 | 0.538 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; Brandi, M.L. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. Nutrients 2018, 10, 1930. https://doi.org/10.3390/nu10121930
Vannucci L, Fossi C, Quattrini S, Guasti L, Pampaloni B, Gronchi G, Giusti F, Romagnoli C, Cianferotti L, Marcucci G, Brandi ML. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. Nutrients. 2018; 10(12):1930. https://doi.org/10.3390/nu10121930
Chicago/Turabian StyleVannucci, Letizia, Caterina Fossi, Sara Quattrini, Leonardo Guasti, Barbara Pampaloni, Giorgio Gronchi, Francesca Giusti, Cecilia Romagnoli, Luisella Cianferotti, Gemma Marcucci, and Maria Luisa Brandi. 2018. "Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters" Nutrients 10, no. 12: 1930. https://doi.org/10.3390/nu10121930