High-Resolution Forest Structure Mapping with Deep Learning to Evaluate Restoration Outcomes
Highlights
- A residual U-Net convolutional neural network trained on PlanetScope imagery (~4.77 m) accurately mapped canopy openings across 1761 km2, achieving 92.2% overall accuracy and an F1-score of 95.1%, with independent LiDAR validation confirming operational performance (85.9% accuracy, F1-score 0.77) across diverse terrain.
- Alaska Peak fuel reduction treatments (2020–2024) created 564 acres of new openings, increasing structural heterogeneity, with 56% of open area within 12 m of residual canopy. However, the large openings (>5 acres) slightly exceeded historical reference conditions for the region.
- This validated deep learning workflow provides forest managers with a scalable, cost-effective monitoring framework to rapidly evaluate restoration treatment effectiveness using commercially available satellite imagery, bridging the gap between expensive LiDAR and coarse-resolution products.
- The framework enables adaptive management by revealing treatment outcomes in actionable metrics; while Alaska Peak treatments successfully fragmented dense canopy and created beneficial edge habitat, refinements to thinning prescriptions could better align opening size distributions with historical reference conditions.
Abstract
1. Introduction
2. Methods
2.1. Study Region
2.2. Satellite Imagery and Reference Data
2.2.1. PlanetScope Imagery
2.2.2. Reference Data for Model Training
2.3. CNN Input Data Preparation
2.4. CNN Architecture, Training, and Validation
2.4.1. Model Architecture
2.4.2. Model Training
2.4.3. Model Performance and Validation
2.5. Independent Validation with Airborne LiDAR
2.6. Case Study: Quantifying Canopy Change in Alaska Peak
2.7. Openings by Size Class
2.8. Computing Environment
3. Results
3.1. CNN Model Performance
3.2. Independent LiDAR Validation
3.3. Canopy Structural Changes in Alaska Peak Treatment Units
4. Discussion
4.1. Model Performance and Validation Against Independent LiDAR Data
4.2. Case Study: North Yuba Landscape Resilience Project
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larson, A.J.; Churchill, D. Tree Spatial Patterns in Fire-Frequent Forests of Western North America, Including Mechanisms of Pattern Formation and Implications for Designing Fuel Reduction and Restoration Treatments. For. Ecol. Manag. 2012, 267, 74–92. [Google Scholar] [CrossRef]
- Stephens, S.L.; Collins, B.M.; Biber, E.; Fulé, P.Z. U.S. Federal Fire and Forest Policy: Emphasizing Resilience in Dry Forests. Ecosphere 2016, 7, e01584. [Google Scholar] [CrossRef]
- Churchill, D.J.; Larson, A.J.; Dahlgreen, M.C.; Franklin, J.F.; Hessburg, P.F.; Lutz, J.A. Restoring Forest Resilience: From Reference Spatial Patterns to Silvicultural Prescriptions and Monitoring. For. Ecol. Manag. 2013, 291, 442–457. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Churchill, D.J.; Larson, A.J.; Haugo, R.D.; Miller, C.; Spies, T.A.; North, M.P.; Povak, N.A.; Belote, R.T.; Singleton, P.H.; et al. Restoring Fire-Prone Inland Pacific Landscapes: Seven Core Principles. Landsc. Ecol. 2015, 30, 1805–1835. [Google Scholar] [CrossRef]
- Lydersen, J.M.; North, M.P.; Knapp, E.E.; Collins, B.M. Quantifying Spatial Patterns of Tree Groups and Gaps in Mixed-Conifer Forests: Reference Conditions and Long-Term Changes Following Fire Suppression and Logging. For. Ecol. Manag. 2013, 304, 370–382. [Google Scholar] [CrossRef]
- Jeronimo, S.M.A.; Kane, V.R.; Churchill, D.J.; Lutz, J.A.; North, M.P.; Asner, G.P.; Franklin, J.F. Forest Structure and Pattern Vary by Climate and Landform across Active-Fire Landscapes in the Montane Sierra Nevada. For. Ecol. Manag. 2019, 437, 70–86. [Google Scholar] [CrossRef]
- Fertel, H.M.; North, M.P.; Latimer, A.M.; Ng, J. Growth and Spatial Patterns of Natural Regeneration in Sierra Nevada Mixed-Conifer Forests with a Restored Fire Regime. For. Ecol Manag. 2022, 519, 120270. [Google Scholar] [CrossRef]
- Camarretta, N.; Harrison, P.A.; Bailey, T.; Potts, B.; Lucieer, A.; Davidson, N.; Hunt, M. Monitoring Forest Structure to Guide Adaptive Management of Forest Restoration: A Review of Remote Sensing Approaches. New For. 2020, 51, 573–596. [Google Scholar] [CrossRef]
- Massey, R.; Berner, L.T.; Foster, A.C.; Goetz, S.J.; Vepakomma, U. Remote Sensing Tools for Monitoring Forests and Tracking Their Dynamics. In Boreal Forests in the Face of Climate Change; Springer: Cham, Switzerland, 2023; pp. 637–655. [Google Scholar]
- Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sens. 2016, 8, 471. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; White, J.C.; Wulder, M.A.; Næsset, E. Remote Sensing in Forestry: Current Challenges, Considerations and Directions. Forestry 2024, 97, 11–37. [Google Scholar] [CrossRef]
- Kane, V.R.; Bartl-Geller, B.N.; North, M.P.; Kane, J.T.; Lydersen, J.M.; Jeronimo, S.M.A.; Collins, B.M.; Monika Moskal, L. First-Entry Wildfires Can Create Opening and Tree Clump Patterns Characteristic of Resilient Forests. For. Ecol. Manag. 2019, 454, 117659. [Google Scholar] [CrossRef]
- Olszewski, J.; Bienz, C.; Markus, A. Using Airborne LiDAR to Monitor Spatial Patterns in South Central Oregon Dry Mixed-Conifer Forest. J. For. 2022, 120, 714–727. [Google Scholar] [CrossRef]
- Churchill, D.J.; Carnwath, G.C.; Larson, A.J.; Jeronimo, S.A. Historical Forest Structure, Composition, and Spatial Pattern in Dry Conifer Forests of the Western Blue Mountains, Oregon; USDA: Portland, OR, USA, 2017.
- Liu, S.; Brandt, M.; Nord-Larsen, T.; Chave, J.; Reiner, F.; Lang, N.; Tong, X.; Ciais, P.; Igel, C.; Pascual, A.; et al. The Overlooked Contribution of Trees Outside Forests to Tree Cover and Woody Biomass across Europe. Sci. Adv. 2023, 9, eadh4097. [Google Scholar] [CrossRef]
- Dixon, D.J.; Zhu, Y.; Jin, Y. Canopy Height Estimation from PlanetScope Time Series with Spatio-Temporal Deep Learning. Remote Sens. Environ. 2024, 318, 114518. [Google Scholar] [CrossRef]
- Francini, S.; McRoberts, R.E.; Giannetti, F.; Mencucci, M.; Marchetti, M.; Scarascia Mugnozza, G.; Chirici, G. Near-Real Time Forest Change Detection Using PlanetScope Imagery. Eur. J. Remote Sens. 2020, 53, 233–244. [Google Scholar] [CrossRef]
- Reiner, F.; Gominski, D.; Fensholt, R.; Brandt, M. An Operational Framework to Track Individual Farmland Trees over Time at National Scales Using PlanetScope. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 1109–1121. [Google Scholar] [CrossRef]
- Wagner, F.H.; Dalagnol, R.; Silva-Junior, C.H.L.; Carter, G.; Ritz, A.L.; Hirye, M.C.M.; Ometto, J.P.H.B.; Saatchi, S. Mapping Tropical Forest Cover and Deforestation with Planet NICFI Satellite Images and Deep Learning in Mato Grosso State (Brazil) from 2015 to 2021. Remote Sens. 2023, 15, 521. [Google Scholar] [CrossRef]
- Hobi, M.L.; Ginzler, C.; Commarmot, B.; Bugmann, H. Gap Pattern of the Largest Primeval Beech Forest of Europe Revealed by Remote Sensing. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Maxwell, C.J.; Scheller, R.M.; Wilson, K.N.; Manley, P.N. Assessing the Effectiveness of Landscape-Scale Forest Adaptation Actions to Improve Resilience under Projected Climate Change. Front. For. Glob. Change 2022, 5, 740869. [Google Scholar] [CrossRef]
- Avery, A.; Vasques, J.; Ilano, E.; Walker, E.; Stout, J.; Barhydt, R.; Porter, D.; Brink, S.; Millar, M. TAHOE-CENTRAL SIERRA INITIATIVE 10-YEAR REGIONAL PLAN Advancing State and Federal Commitments to Restore Resilience. 2023. Available online: https://www.tahoecentralsierra.org/wp-content/uploads/2023/09/1.-TCSI-10-Year-Regional-Plan.pdf (accessed on 1 January 2025).
- U.S. Forest Service. North Yuba Landscape Resilience Project; Final Environmental Impact Statement; U.S. Forest Service: Nevada city, CA, USA, 2023.
- Planet Labs BBC. PlanetScope Product Specifications; Planet Labs BBC: San Francisco, CA, USA, 2023. [Google Scholar]
- Salo Sciences. California Forest Observatory Data Description: Vegetation Structure & Fuels; Salo Sciences, Inc.: San Francisco, CA, USA, 2020. [Google Scholar]
- Wilkinson, Z.A.; Kramer, H.A.; Jones, G.M.; Zulla, C.J.; McGinn, K.; Barry, J.M.; Sawyer, S.C.; Tanner, R.; Gutiérrez, R.J.; Keane, J.J.; et al. Tall, Heterogeneous Forests Improve Prey Capture, Delivery to Nestlings, and Reproductive Success for Spotted Owls in Southern California. Ornithol. Appl. 2023, 125, duac048. [Google Scholar] [CrossRef]
- Chamberlain, C.P.; Cova, G.R.; Kane, V.R.; Cansler, C.A.; Kane, J.T.; Bartl-Geller, B.N.; van Wagtendonk, L.; Jeronimo, S.M.A.; Stine, P.; North, M.P. Sierra Nevada Reference Conditions: A Dataset of Contemporary Reference Sites and Corresponding Remote Sensing-Derived Forest Structure Metrics for Yellow Pine and Mixed-Conifer Forests. Data Brief 2023, 51, 109807. [Google Scholar] [CrossRef] [PubMed]
- Kramer, H.A.; Kelly, K.G.; Whitmore, S.A.; Berigan, W.J.; Reid, D.S.; Wood, C.M.; Klinck, H.; Kahl, S.; Manley, P.N.; Sawyer, S.C.; et al. Using Bioacoustics to Enhance the Efficiency of Spotted Owl Surveys and Facilitate Forest Restoration. J. Wildl. Manag. 2024, 88, e22533. [Google Scholar] [CrossRef]
- Zulla, C.J.; Jones, G.M.; Kramer, H.A.; Keane, J.J.; Roberts, K.N.; Dotters, B.P.; Sawyer, S.C.; Whitmore, S.A.; Berigan, W.J.; Kelly, K.G.; et al. Forest Heterogeneity Outweighs Movement Costs by Enhancing Hunting Success and Reproductive Output in California Spotted Owls. Landsc. Ecol. 2023, 38, 2655–2673. [Google Scholar] [CrossRef]
- Wright, M.E.; Zachariah Peery, M.; Ayars, J.; Dotters, B.P.; Roberts, K.N.; Jones, G.M. Fuels Reduction Can Directly Improve Spotted Owl Foraging Habitat in the Sierra Nevada. For. Ecol Manag. 2023, 549, 121430. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Franklin, J. Predictive Vegetation Mapping: Geographic Modelling of Biospatial Patterns in Relation to Environmental Gradients. Prog. Phys. Geogr. Earth Environ. 1995, 19, 474–499. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014. Proceeding of 13th European Conference, Zurich, Switzerland, 12 September 2014; Springer: Cham, Switzerland, 2014; pp. 818–833. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Proceeding of 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham: Switzerland, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: New York, NY, USA, 2015. [Google Scholar]
- Drozdzal, M.; Vorontsov, E.; Chartrand, G.; Kadoury, S.; Pal, C. The Importance of Skip Connections in Biomedical Image Segmentation. In Deep Learning and Data Labeling for Medical Applications. Proceeding of First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, 21 October 2016; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; ISBN 0262035618. [Google Scholar]
- de Boer, P.-T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A Tutorial on the Cross-Entropy Method. Ann. Oper. Res. 2005, 134, 19–67. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. arXiv 2016, arXiv:1605.08695. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 1 January 2025).
- USGS. 3D Elevation Program (3DEP) Lidar Point Cloud: CA Sierra Nevada B22 [Dataset]; USGS: Reston, VA, USA, 2022. [Google Scholar]
- Roussel, J.R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.F.; de Boissieu, F.; Achim, A. LidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Pfeifer, N.; Reiter, T.; Briese, C.; Rieger, W. Interpolation of High Quality Ground Models from Laser Scanner Data in Forested Areas. In International Archives of Photogrammetry and Remote Sensing. Proceeding of ISPRS Workshop, La Jolla, CA, USA, 9–11 November 1999; ISPRS: Beijing, China, 1999. [Google Scholar]
- Bonnet, S.; Gaulton, R.; Lehaire, F.; Lejeune, P. Canopy Gap Mapping from Airborne Laser Scanning: An Assessment of the Positional and Geometrical Accuracy. Remote Sens. 2015, 7, 11267–11294. [Google Scholar] [CrossRef]
- Goodbody, T.R.H.; Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A.; Sanelli, M. Uncovering Spatial and Ecological Variability in Gap Size Frequency Distributions in the Canadian Boreal Forest. Sci. Rep. 2020, 10, 6069. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Zhang, N.; Wei, X.; Gu, X.; Zhao, X.; Yao, Y.; Xie, X. Land Cover Classification of Finer Resolution Remote Sensing Data Integrating Temporal Features from Time Series Coarser Resolution Data. ISPRS J. Photogramm. Remote Sens. 2014, 93, 49–55. [Google Scholar] [CrossRef]
- Radoux, J.; Lamarche, C.; Van Bogaert, E.; Bontemps, S.; Brockmann, C.; Defourny, P. Automated Training Sample Extraction for Global Land Cover Mapping. Remote Sens 2014, 6, 3965–3987. [Google Scholar] [CrossRef]
- Finco, M.; Quayle, B.; Zhang, Y.; Lecker, J.; Megown, K.A.; Kenneth Brewer, C. Moving from Status to Monitoring Trends And Burn Severity (MTBS): Monitoring Wildfire Activity for the Past Quarter Century Using Landsat Data; USDA: Washington, DC, USA, 2012.
- McGarigal, K.; (Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, USA); Estes, B.L.; (U.S. Forest Service, Fort Collins, CO, USA); Conway, S.; Perrot, D.; Tierney, M.; (U.S. Forest Service, Fort Collins, CO, USA); Walsh, T.; (U.S. Forest Service, Fort Collins, CO, USA); Liang, C.; Smith, E. Northern Sierra Historical Range of Variability and Current Landscape Departure. Unpublished work. 2022. [Google Scholar]
- Brown, R. Trapper Project Silviculture Analysis; USDA Forest Service; Tahoe National Forest: Nevada City, CA, USA, 2020. Available online: https://usfs-public.app.box.com/v/PinyonPublic/file/934109640532 (accessed on 1 January 2025).
- White, A.M.; Zipkin, E.F.; Manley, P.N.; Schlesinger, M.D. Conservation of Avian Diversity in the Sierra Nevada: Moving beyond a Single-Species Management Focus. PLoS ONE 2013, 8, e63088. [Google Scholar] [CrossRef]
- Stephens, S.L.; Bigelow, S.W.; Burnett, R.D.; Collins, B.M.; Gallagher, C.V.; Keane, J.; Kelt, D.A.; North, M.P.; Roberts, L.J.; Stine, P.A.; et al. California Spotted Owl, Songbird, and Small Mammal Responses to Landscape Fuel Treatments. Bioscience 2014, 64, 893–906. [Google Scholar] [CrossRef]
- Gray, A.N.; Spies, T. Microsite Controls on Tree Seedling Establishment In Conifer Forest Canopy Gaps. Ecology 1997, 78, 2458–2473. [Google Scholar] [CrossRef]
- York, R.A.; Battles, J.J.; Heald, R.C. Edge Effects in Mixed Conifer Group Selection Openings: Tree Height Response to Resource Gradients. For. Ecol. Manag. 2003, 179, 107–121. [Google Scholar] [CrossRef]
- Howe, A.A.; Parks, S.A.; Harvey, B.J.; Saberi, S.J.; Lutz, J.A.; Yocom, L.L. Comparing Sentinel-2 and Landsat 8 for Burn Severity Mapping in Western North America. Remote Sens. 2022, 14, 5249. [Google Scholar] [CrossRef]
- Kolden, C.A.; Abatzoglou, J.T.; Lutz, J.A.; Cansler, C.A.; Kane, J.T.; Van Wagtendonk, J.W.; Key, C.H. Climate Contributors to Forest Mosaics: Ecological Persistence Following Wildfire. Proc. Northwest Sci. 2015, 89, 219–238. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Smith, A.M.S.; Cansler, C.A.; Abatzoglou, J.T.; Meigs, G.W.; Downing, W.M.; Krawchuk, M.A. Fire Refugia: What Are They, and Why Do They Matter for Global Change? Bioscience 2018, 68, 944–954. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hendershot, J.N.; Estes, B.L.; Wilson, K.N. High-Resolution Forest Structure Mapping with Deep Learning to Evaluate Restoration Outcomes. Remote Sens. 2026, 18, 346. https://doi.org/10.3390/rs18020346
Hendershot JN, Estes BL, Wilson KN. High-Resolution Forest Structure Mapping with Deep Learning to Evaluate Restoration Outcomes. Remote Sensing. 2026; 18(2):346. https://doi.org/10.3390/rs18020346
Chicago/Turabian StyleHendershot, J. Nicholas, Becky L. Estes, and Kristen N. Wilson. 2026. "High-Resolution Forest Structure Mapping with Deep Learning to Evaluate Restoration Outcomes" Remote Sensing 18, no. 2: 346. https://doi.org/10.3390/rs18020346
APA StyleHendershot, J. N., Estes, B. L., & Wilson, K. N. (2026). High-Resolution Forest Structure Mapping with Deep Learning to Evaluate Restoration Outcomes. Remote Sensing, 18(2), 346. https://doi.org/10.3390/rs18020346

