Data-Driven Multidecadal Reconstruction and Nowcasting of Coastal and Offshore 3-D Sea Temperature Fields from Satellite Observations: A Case Study in the East/Japan Sea
Highlights
- Developed and implemented a masked loss function that enables accurate reconstruction of 3-dimensional sea temperature fields across both coastal and offshore regions.
- By leveraging daily satellite-derived SST and SSH observations, the model reconstructs long-term temperature fields and supports near-real-time nowcasting.
- The reconstructed multidecadal dataset supports analyses of long-term ocean warming, marine heatwaves, and circulation changes in marginal seas.
- Provides a computationally efficient alternative to conventional ocean reanalysis, enabling near-real-time generation of 3-dimensional sea temperature fields from daily satellite inputs and offering a practical tool for operational monitoring.
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Construction of ANN Model
2.3. Feature Importance (FI) Test
3. Results
3.1. Validation for Reconstruction and Prediction
3.2. Error Analysis
3.2.1. Feature Importance and Key Drivers
3.2.2. Influence of Target Data Distribution
3.3. Spatiotemporal Continuity of the Reconstructed Field
3.4. Results of Long-Term Reconstruction
4. Discussion
4.1. Overall Performance and Generalization
4.2. Physical Interpretation of Key Predictors
4.3. Uncertainty, Regional Limitations, and Coherence of the Reconstructed Field
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 3-D/4-D | Three-/Four-Dimensional (Reconstructed Fields) |
| ADT | Absolute Dynamic Topography |
| ANN | Artificial Neural Network |
| CNN | Convolutional Neural Network |
| Corr. Coef. | Correlation Coefficient |
| DEP | Depth (Bathymetry) |
| EJS | East/Japan Sea |
| FI | Feature Importance |
| GLR | Generalization Loss Rate |
| MDT | Mean Dynamic Topography |
| MLD | Mixed Layer Depth |
| RMSE | Root Mean Squared Error |
| RRMSE | Relative Root Mean Squared Error |
| SLA | Sea Level Anomaly |
| SST | Sea Surface Temperature |
| T_MA/T_AN | Monthly mean temperature and their anomalies |
| UGOSA | Zonal Geostrophic Velocity Anomaly |
| VGOSA | Meridional Geostrophic Velocity Anomaly |
References
- Takashi, I.; Kenzo, T. Mesoscale eddies in the Japan Sea. La mer 1988, 26, 69–76. [Google Scholar]
- Danchenkov, M.; Lobanov, V.; Riser, S.; Kim, K.; Takematsu, M.; Yoon, J.-H. A history of physical oceanographic research in the Japan/East Sea. Oceanography 2006, 19, 18–31. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.R.; Min, D.H.; Volkov, Y.; Yoon, J.H.; Takematsu, M. Warming and structural changes in the East (Japan) Sea: A clue to future changes in global oceans? Geophys. Res. Lett. 2001, 28, 3293–3296. [Google Scholar] [CrossRef]
- Kwon, Y.O.; Kim, K.; Kim, Y.G.; Kim, K.R. Diagnosing long-term trends of the water mass properties in the East Sea (Sea of Japan). Geophys. Res. Lett. 2004, 31, L20306. [Google Scholar] [CrossRef]
- Belkin, I.M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 2009, 81, 207–213. [Google Scholar] [CrossRef]
- Jo, Y.-H.; Breaker, L.C.; Tseng, Y.-H.; Yeh, S.-W. A temporal multiscale analysis of the waters off the east coast of South Korea over the past four decades. Terr. Atmos. Ocean. Sci. 2014, 25, 415–434. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Wang, D.; Xu, T.; Fang, G.; Jiang, S.; Wang, G.; Wei, Z.; Wang, Y. Characteristics of marine heatwaves in the Japan/East Sea. Remote Sens. 2022, 14, 936. [Google Scholar] [CrossRef]
- Song, S.-Y.; Kim, Y.-J.; Lee, E.-J.; Yeh, S.-W.; Park, J.-H.; Park, Y.-G. Wintertime sea surface temperature variability modulated by Arctic Oscillation in the northwestern part of the East/Japan Sea and its relationship with marine heatwaves. Front. Mar. Sci. 2023, 10, 1198418. [Google Scholar] [CrossRef]
- Saranya, J.S.; Nam, S. Subsurface evolution of three types of surface marine heatwaves over the East Sea (Japan Sea). Prog. Oceanogr. 2024, 222, 103226. [Google Scholar] [CrossRef]
- Chang, K.I.; Teague, W.J.; Lyu, S.J.; Perkins, H.T.; Lee, D.K.; Watts, D.R.; Kim, Y.B.; Mitchell, D.A.; Lee, C.M.; Kim, K. Circulation and currents in the southwestern East/Japan Sea: Overview and review. Prog. Oceanogr. 2004, 61, 105–156. [Google Scholar] [CrossRef]
- Talley, L.; Min, D.-H.; Lobanov, V.; Luchin, V.; Ponomarev, V.; Salyuk, A.; Shcherbina, A.; Tishchenko, P.; Zhabin, I. Japan/East Sea water masses and their relation to the sea’s circulation. Oceanography 2006, 19, 32–49. [Google Scholar] [CrossRef]
- Teague, W.J.; Ko, D.S.; Jacobs, G.A.; Perkins, H.T.; Book, J.W.; Smith, S.R.; Chang, K.-I.; Suk, M.-S.; Kim, K.; Lyu, S.J.; et al. Currents through the Korea/Tsushima Strait. Oceanography 2006, 19, 50–63. [Google Scholar] [CrossRef]
- Park, K.-A.; Park, J.-E.; Choi, B.-J.; Lee, S.-H.; Shin, H.-R.; Lee, S.-R.; Byun, D.-S.; Kang, B.; Lee, E. Schematic maps of ocean currents in the yellow sea and the East China Sea for science textbooks based on scientific knowledge from oceanic measurements (in Korean). J. Korean Soc. Oceanogr. 2017, 22, 151–171. [Google Scholar] [CrossRef]
- Kim, D.; Ji, R.; Park, H.J.; Feng, Z.; Jang, J.; Lee, C.l.; Kang, Y.-H.; Kang, C.-K. Impact of shifting Subpolar Front on phytoplankton dynamics in the western margin of East/Japan Sea. Front. Mar. Sci. 2021, 8, 790703. [Google Scholar] [CrossRef]
- Seung, Y.H. A dinamic consideration on the temperature distribution in the east coast of Korea in august. J. Oceanol. Soc. Korean 1974, 9, 52–58. [Google Scholar]
- Kim, D.; Choi, J.-G.; Park, J.; Kwon, J.-I.; Kim, M.-H.; Jo, Y.-H. Upwelling processes driven by contributions from wind and current in the Southwest East Sea (Japan Sea). Front. Mar. Sci. 2023, 10, 1165366. [Google Scholar] [CrossRef]
- Lee, S.; Chae, J.-Y.; Park, J.-H.; Kim, Y.T.; Kang, B.; Shin, C.-W.; Ha, H.K. Remote impacts of low-latitude oceanic climate on coastal upwelling in a marginal sea of the Northwestern Pacific. Reg. Stud. Mar. Sci. 2024, 69, 103344. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.-R.; Kim, Y.-G.; Cho, Y.-K.; Kang, D.-J.; Takematsu, M.; Volkov, Y. Water masses and decadal variability in the East Sea (Sea of Japan). Prog. Oceanogr. 2004, 61, 157–174. [Google Scholar] [CrossRef]
- Park, K.A.; Kim, K.R. Unprecedented coastal upwelling in the East/Japan Sea and linkage to long-term large-scale variations. Geophys. Res. Lett. 2010, 37, L09603. [Google Scholar] [CrossRef]
- Yoon, D.-Y.; Choi, H.-W. A comparison of spatio-temporal variation pattern of sea surface temperature according to the regional scale in the south sea of Korea (in Korean). J. Korean Assoc. Geogr. Inf. Stud. 2011, 14, 182–193. [Google Scholar] [CrossRef]
- Shin, J.W.; Park, J.; Choi, J.G.; Jo, Y.H.; Kang, J.J.; Joo, H.; Lee, S.H. Variability of phytoplankton size structure in response to changes in coastal upwelling intensity in the southwestern East Sea. J. Geophys. Res. Oceans 2017, 122, 10262–10274. [Google Scholar] [CrossRef]
- Yoon, S.T.; Chang, K.I.; Nam, S.; Rho, T.; Kang, D.J.; Lee, T.; Park, K.A.; Lobanov, V.; Kaplunenko, D.; Tishchenko, P.; et al. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Sci. Rep. 2018, 8, 1576. [Google Scholar] [CrossRef] [PubMed]
- Han, I.-S.; Lee, J.-S. Change the annual amplitude of sea surface temperature due to climate change in a recent decade around the Korean peninsula. J. Korean Soc. Mar. Environ. Saf. 2020, 26, 233–241. [Google Scholar] [CrossRef]
- Park, J. Long-term variability of the East Sea intermediate water thickness: Regime shift of intermediate layer in the mid-1990s. Front. Mar. Sci. 2022, 9, 923093. [Google Scholar] [CrossRef]
- Lee, S.; Park, M.S.; Kwon, M.; Park, Y.G.; Kim, Y.H.; Choi, N. Rapidly changing East Asian marine heatwaves under a warming climate. J. Geophys. Res. Oceans 2023, 128, e2023JC019761. [Google Scholar] [CrossRef]
- Lee, E.-Y.; Park, K.-A. Change in the recent warming trend of sea surface emperature in the East Sea (Sea of Japan) over decades (1982–2018). Remote Sens. 2019, 11, 2613. [Google Scholar] [CrossRef]
- Hong, J.; Seo, S.; Jeon, C.; Park, J.-H.; Park, Y.-G.; Min, H.S. Evaluation of temperature and salinity fields of HYCOM reanalysis data in the East Sea. Ocean Polar Res. 2016, 38, 271–286. [Google Scholar] [CrossRef]
- Zhao, Q.; Peng, S.; Wang, J.; Li, S.; Hou, Z.; Zhong, G. Applications of deep learning in physical oceanography: A comprehensive review. Front. Mar. Sci. 2024, 11, 1396322. [Google Scholar] [CrossRef]
- Han, M.; Feng, Y.; Zhao, X.; Sun, C.; Hong, F.; Liu, C. A convolutional neural network using surface data to predict subsurface temperatures in the Pacific Ocean. IEEE Access 2019, 7, 172816–172829. [Google Scholar] [CrossRef]
- Nardelli, B.B. A deep learning network to retrieve ocean hydrographic profiles from combined satellite and in situ measurements. Remote Sens. 2020, 12, 3151. [Google Scholar] [CrossRef]
- Meng, L.; Yan, C.; Zhuang, W.; Zhang, W.; Yan, X.-H. Reconstruction of three-dimensional temperature and salinity fields from satellite observations. J. Geophys. Res. 2021, 126, e2021JC017605. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X.-H. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, P.; Bao, S.; Zhang, W. Rapid reconstruction of temperature and salinity fields based on machine learning and the assimilation application. Front. Mar. Sci. 2022, 9, 985048. [Google Scholar] [CrossRef]
- Su, H.; Jiang, J.; Wang, A.; Zhuang, W.; Yan, X.-H. Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning. Remote Sens. 2022, 14, 3198. [Google Scholar] [CrossRef]
- Seung, Y.-H. An advection-diffusion model for the distribution of surface cold water near UIgi (Ulsan), SE Korea. J. Oceanol. Soc. Korean 1988, 23, 13–23. [Google Scholar]
- Kim, Y.H. Numerical Experiments on the North Korean Cold Current in the East Sea. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 2006. [Google Scholar]
- Kwak, M.-T.; Seo, G.-H.; Cho, Y.-K.; Kim, B.-G.; You, S.H.; Seo, J.-W. Long-term comparison of satellite and in-situ sea surface temperatures around the Korean Peninsula. Ocean Sci. J. 2015, 50, 109–117. [Google Scholar] [CrossRef]
- Khatun, A.; Nisha, M.N.; Chatterjee, S.; Sridhar, V. A novel insight on input variable and time lag selection in daily streamflow forecasting using deep learning models. Environ. Model. Softw. 2024, 179, 106126. [Google Scholar] [CrossRef]
- Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941v2. [Google Scholar] [CrossRef]
- O’Donncha, F.; Zhang, Y.; Chen, B.; James, S.C. Ensemble model aggregation using a computationally lightweight machine-learning model to forecast ocean waves. J. Mar. Syst. 2019, 199, 103206. [Google Scholar] [CrossRef]
- Wolff, S.; O’Donncha, F.; Chen, B. Statistical and machine learning ensemble modelling to forecast sea surface temperature. J. Mar. Syst. 2020, 208, 103347. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Dong, J.; Tan, N.; Liu, X.; Chatzipavlis, A.; Yu, P.L.H.; Velegrakis, A.; Wang, Y.; Huang, Y.; et al. Dissolved oxygen prediction in the Dianchi River basin with explainable artificial intelligence based on physical prior knowledge. Environ. Model. Softw. 2025, 188, 106412. [Google Scholar] [CrossRef]
- Krogh, A.; Hertz, J.A. A Simple Weight Decay Can Improve Generalization; Technical Report; Computer Science Department, University of California: San Diego, CA, USA, 1992. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Nam, S.; Yoon, S.T.; Park, J.H.; Kim, Y.H.; Chang, K.I. Distinct characteristics of the intermediate water observed off the east coast of Korea during two contrasting years. J. Geophys. Res. Oceans 2016, 121, 5050–5068. [Google Scholar] [CrossRef]
- Park, J.-H.; Watts, D.R. Internal tides in the southwestern Japan/East Sea. J. Phys. Oceanogr. 2006, 36, 22–34. [Google Scholar] [CrossRef]
- Noh, S.; Nam, S. Observations of enhanced internal waves in an area of strong mesoscale variability in the southwestern East Sea (Japan Sea). Sci. Rep. 2020, 10, 9068. [Google Scholar] [CrossRef]
- Jeon, C.; Park, J.-H.; Varlamov, S.M.; Yoon, J.-H.; Kim, Y.H.; Seo, S.; Park, Y.-G.; Min, H.S.; Lee, J.H.; Kim, C.-H. Seasonal variation of semidiurnal internal tides in the East/Japan Sea. J. Geophys. Res. Oceans 2014, 119, 2843–2859. [Google Scholar] [CrossRef]
- Jeong, Y.; Nam, S.; Kwon, J.-I.; Uppara, U.; Jo, Y.-H. Surface warming slowdown with continued subsurface warming in the East Sea (Japan Sea) over recent decades (2000–2014). Front. Mar. Sci. 2022, 9, 825368. [Google Scholar] [CrossRef]
- Pak, G.; Lee, K.-J.; Lee, S.-W.; Jin, H.; Park, J.-H. Quantification of the extremely intensified East Korea Warm Current in the summer of 2021: Offshore and coastal variabilities. Front. Mar. Sci. 2023, 10, 103206. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Awaji, T.; Akitomo, K. Formation and circulation processes of intermediate water in the Japan Sea. J. Phys. Oceanogr. 1999, 29, 1701–1722. [Google Scholar] [CrossRef]
- Park, J.-H.; Watts, D.R.; Tracey, K.L.; Mitchell, D.A. A multi-index GEM technique and its application to the southwestern Japan/East Sea. J. Atmos. Ocean. Technol. 2005, 22, 1282–1293. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Teague, W.J.; Wimbush, M.; Watts, D.R.; Sutyrin, G.G. The Dok Cold Eddy. J. Phys. Oceanogr. 2005, 35, 273–288. [Google Scholar] [CrossRef]
- Knauss, J.A. Introduction to Physical Oceanography, 2nd ed.; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]











| Data (or Organization) Name | Data Feature (the Number of Features in Model) | |
|---|---|---|
| Target (output) | KHOA, KODC, JODC, Argo and CREAMS | In situ temperature profile (13) |
| Input | OSTIA | Sea surface temperature (1) |
| AVISO | Absolute dynamic topography, sea level anomaly, and geostrophic velocity anomalies (4) | |
| WOA18 | Vertical profiles of ocean temperature, monthly mean, and their anomalies (2 × 14) | |
| GEBCO | Depth (bathymetry), Longitude, Latitude (3) | |
| Date matrix | [1 by 12] formation date matrix (ad hoc) (1 × 12) |
| Category | Setting |
|---|---|
| Dataset | Periods: 1993.01–2023.12 Training & validation: 25 years (50,470 profiles) (randomly divided into 80% for training and 20% for validation after excluding the test set) Test: 6 years (`95,`00,`05,`10,`15,`20; 13,403 profiles) and CREAMS data |
| Ensemble | Bagging by averaging 7 ensemble members |
| Activation function | 2-D inputs: [linear, ELU, GeLU, tanh]/the others: linear (Using hyperopt module) |
| Grid size | 13 (1°) |
| Optimizer | Adam (learning rate: 0.0003) |
| Loss function | Masked mean squared error |
| Model | RMSE (°C) | RRMSE | Bias (°C) | Corr. Coef. |
|---|---|---|---|---|
| ANN (training set) | 1.29 | 0.49 | 0.01 | 0.84 |
| ANN (test set) | 1.33 | 0.49 | 0.10 | 0.82 |
| HYCOM | 1.73 | 1.04 | 0.26 | 0.66 |
| GLORYS | 1.65 | 0.64 | 0.14 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lee, E.-J.; Hwang, Y.; Kim, Y.-T.; Nam, S.; Park, J.-H. Data-Driven Multidecadal Reconstruction and Nowcasting of Coastal and Offshore 3-D Sea Temperature Fields from Satellite Observations: A Case Study in the East/Japan Sea. Remote Sens. 2026, 18, 246. https://doi.org/10.3390/rs18020246
Lee E-J, Hwang Y, Kim Y-T, Nam S, Park J-H. Data-Driven Multidecadal Reconstruction and Nowcasting of Coastal and Offshore 3-D Sea Temperature Fields from Satellite Observations: A Case Study in the East/Japan Sea. Remote Sensing. 2026; 18(2):246. https://doi.org/10.3390/rs18020246
Chicago/Turabian StyleLee, Eun-Joo, Yerin Hwang, Young-Taeg Kim, SungHyun Nam, and Jae-Hun Park. 2026. "Data-Driven Multidecadal Reconstruction and Nowcasting of Coastal and Offshore 3-D Sea Temperature Fields from Satellite Observations: A Case Study in the East/Japan Sea" Remote Sensing 18, no. 2: 246. https://doi.org/10.3390/rs18020246
APA StyleLee, E.-J., Hwang, Y., Kim, Y.-T., Nam, S., & Park, J.-H. (2026). Data-Driven Multidecadal Reconstruction and Nowcasting of Coastal and Offshore 3-D Sea Temperature Fields from Satellite Observations: A Case Study in the East/Japan Sea. Remote Sensing, 18(2), 246. https://doi.org/10.3390/rs18020246

