A Novel Two-Stream Network for Few-Shot Remote Sensing Image Scene Classification
Abstract
:1. Introduction
2. Related Work
3. Methods
3.1. Architecture
3.2. Key Area Localization
3.2.1. Vector Construction
3.2.2. Greedy Boundary Search
Algorithm 1 Greedy Boundary Search |
Require: Width vector: |
Ensure: Width boundaries of the most critical area: |
for do |
if then |
end if |
end for |
if then |
while do |
if then |
else |
end if |
end while |
else |
while do |
if then |
else |
end if |
end while |
end if |
3.2.3. The Two-Stream Architecture
3.2.4. The Loss Function
4. Results
4.1. Dataset Description
4.1.1. The NWPU-RESISC45 Dataset
4.1.2. The UC Merced Dataset
4.1.3. The WHU-RS19 Dataset
4.2. The Experimental Setting
4.2.1. The Experimental Software and Hardware Environment
4.2.2. The Experimental Design
4.3. The Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
N | sample count per class of the query set |
K | sample count per class of the support set |
C | class number |
metric module | |
embedding module | |
c | a specific class |
feature map | |
s | constant |
cosine | |
central loss of DEADN4 | |
class loss of EWADN4 | |
left boundary of the key area width | |
right boundary of the key area width | |
upper boundary of the key area height | |
lower boundary of the key area height | |
total of the feature map across the width axis | |
total of the feature map across the height axis | |
E | energy |
total loss of DEADN4 | |
prototype representation | |
local stream loss of our method | |
total loss of our method | |
total loss of our method | |
constant | |
constant | |
p | classification probability |
H | feature map’s height |
W | feature map’s width |
d | size of the DLGD |
B | bounding box |
References
- Jiang, N.; Shi, H.; Geng, J. Multi-Scale Graph-Based Feature Fusion for Few-Shot Remote Sensing Image Scene Classification. Remote Sens. 2022, 14, 5550. [Google Scholar] [CrossRef]
- Xing, S.; Xing, J.; Ju, J.; Hou, Q.; Ding, X. Collaborative Consistent Knowledge Distillation Framework for Remote Sensing Image Scene Classification Network. Remote Sens. 2022, 14, 5186. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, K.; Dou, Y.; Zhao, Y.; Gao, Z. WRMatch: Improving FixMatch with Weighted Nuclear-Norm Regularization for Few-Shot Remote Sensing Scene Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5612214. [Google Scholar]
- Bai, T.; Wang, H.; Wen, B. Targeted Universal Adversarial Examples for Remote Sensing. Remote Sens. 2022, 14, 5833. [Google Scholar] [CrossRef]
- Muhammad, U.; Hoque, M.; Wang, W.; Oussalah, M. Patch-Based Discriminative Learning for Remote Sensing Scene Classification. Remote Sens. 2022, 14, 5913. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, G.; Liu, M. Remote Sensing Image Scene Classification with Self-Supervised Learning Based on Partially Unlabeled Datasets. Remote Sens. 2022, 14, 5838. [Google Scholar] [CrossRef]
- Yao, X.; Feng, X.; Han, J.; Cheng, G.; Guo, L. Automatic Weakly Supervised Object Detection from High Spatial Resolution Remote Sensing Images via Dynamic Curriculum Learning. IEEE Trans. Geosci. Remote Sens. 2021, 59, 675–685. [Google Scholar] [CrossRef]
- Huang, X.; Han, X.; Ma, S.; Lin, T.; Gong, J. Monitoring ecosystem service change in the City of Shenzhen by the use of high-resolution remotely sensed imagery and deep learning. Land Degrad. 2019, 30, 1490–1501. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhong, Y.; Zhang, L.; Li, D. Adaptive deep sparse semantic modeling framework for high spatial resolution image scene classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6180–6195. [Google Scholar]
- Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.W. Semi-Supervised Deep Learning Classification for Hyperspectral Image Based on Dual-Strategy Sample Selection. Remote Sens. 2018, 10, 574. [Google Scholar] [CrossRef]
- Cheng, G.; Guo, L.; Zhao, T.; Han, J.; Li, H.; Fang, J. Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. Int. J. Remote Sens. 2013, 34, 45–59. [Google Scholar] [CrossRef]
- Lv, Z.; Shi, W.; Zhang, X.; Benediktsson, J. Landslide inventory mapping from bitemporal high-resolution remote sensing images using change detection and multiscale segmentation. IEEE J. Sel. Top. Appl. Earth Observ. 2018, 11, 1520–1532. [Google Scholar]
- Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.; Pacifici, F. Very high resolution multiangle urban classification analysis. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1155–1170. [Google Scholar] [CrossRef]
- Tayyebi, A.; Pijanowski, B.; Tayyebi, A. An urban growth boundary model using neural networks, GIS and radial parameterization: An application to Tehran, Iran. Landscape Urban. Plan. 2011, 100, 35–44. [Google Scholar] [CrossRef]
- Huang, X.; Wen, D.; Li, J.; Qin, R. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery. Remote Sens. Environ. 2017, 196, 56–75. [Google Scholar]
- Zhang, T.; Huang, X. Monitoring of urban impervious surfaces using time series of high-resolution remote sensing images in rapidly urbanized areas: A case study of Shenzhen. IEEE J. Sel. Top. Appl. Earth Observ. 2018, 11, 2692–2708. [Google Scholar]
- Li, X.; Shao, G. Object-based urban vegetation mapping with high-resolution aerial photography as a single data source. Int. J. Remote Sens. 2013, 34, 771–789. [Google Scholar]
- Rußwurm, M.; Körner, M. Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geo-Inf. 2018, 7, 129. [Google Scholar] [CrossRef]
- Othman, E.; Bazi, Y.; Melgani, F.; Alhichri, H.; Alajlan, N.; Zuair, M. Domain adaptation network for cross-scene classification. Remote Sens. 2017, 55, 4441–4456. [Google Scholar] [CrossRef]
- Chaib, S.; Liu, H.; Gu, Y.; Yao, H. Deep feature fusion for VHR remote sensing scene classification. Remote Sens. 2017, 55, 4775–4784. [Google Scholar] [CrossRef]
- Wang, X.; Xu, H.; Yuan, L.; Dai, W.; Wen, X. A remote-sensing scene-image classification method based on deep multiple-instance learning with a residual dense attention ConvNet. Remote Sens. 2022, 14, 5095. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, X.; Liu, C. A General Self-Supervised Framework for Remote Sensing Image Classification. Remote Sens. 2022, 14, 4824. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Yang, J.; Wu, Z. Remote Sensing Image Scene Classification via Self-Supervised Learning and Knowledge Distillation. Remote Sens. 2022, 14, 4813. [Google Scholar] [CrossRef]
- Alajaji, D.; Alhichri, H.S.; Ammour, N.; Alajlan, N. Few-Shot Learning For Remote Sensing Scene Classification. In Proceedings of the Mediterranean and Middle-East Geoscience and Remote Sensing Symposium, Tunis, Tunisia, 9–11 March 2020; pp. 81–84. [Google Scholar]
- Noothout, J.M.H.; De Vos, B.D.; Wolterink, J.M.; Postma, E.M.; Smeets, P.A.M.; Takx, R.A.P.; Leiner, T.; Viergever, M.A.; Išgum, I. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. IEEE Trans. Med. Imaging. 2020, 39, 4011–4022. [Google Scholar] [CrossRef] [PubMed]
- Cen, F.; Wang, G. Boosting Occluded Image Classification via Subspace Decomposition-Based Estimation of Deep Features. IEEE Trans. Cybern. 2020, 50, 3409–3422. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, J.; Yao, X.; Cheng, G.; Guo, L. DLA-MatchNet for few-shot remote sensing image scene classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7844–7853. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556v6. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Liu, Y.; Zhong, Y.; Fei, F.; Zhang, L. Scene semantic classification based on random-scale stretched convolutional neural network for high-spatial resolution remote sensing imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 763–766. [Google Scholar]
- Wu, B.; Meng, D.; Zhao, H. Semi-Supervised Learning for Seismic Impedance Inversion Using Generative Adversarial Networks. Remote Sens. 2021, 13, 909. [Google Scholar] [CrossRef]
- Geng, J.; Deng, X.; Ma, X.; Jiang, W. Transfer Learning for SAR Image Classification via Deep Joint Distribution Adaptation Networks. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5377–5392. [Google Scholar] [CrossRef]
- Zhan, T.; Song, B.; Xu, Y.; Wan, M.; Wang, X.; Yang, G.; Wu, Z. SSCNN-S: A spectral-spatial convolution neural network with Siamese architecture for change detection. Remote Sens. 2021, 13, 895. [Google Scholar] [CrossRef]
- Du, L.; Li, L.; Guo, Y.; Wang, Y.; Ren, K.; Chen, J. Two-Stream Deep Fusion Network Based on VAE and CNN for Synthetic Aperture Radar Target Recognition. Remote Sens. 2021, 13, 4021. [Google Scholar] [CrossRef]
- Xu, P.; Li, Q.; Zhang, B.; Wu, F.; Zhao, K.; Du, X.; Yang, C.; Zhong, R. On-Board Real-Time Ship Detection in HISEA-1 SAR Images Based on CFAR and Lightweight Deep Learning. Remote Sens. 2021, 13, 1995. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Ning, C.; Zhou, H. Enhanced feature pyramid network with deep semantic embedding for remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7918–7932. [Google Scholar] [CrossRef]
- Sun, X.; Wang, B.; Wang, Z.; Li, H.; Li, H.; Fu, K. Research Progress on Few-Shot Learning for Remote Sensing Image Interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 637–648. [Google Scholar]
- Wang, Y.; Yao, Q.; Kwok, J.; Ni, L. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. 2020, 53, 1–34. [Google Scholar]
- Li, X.; Sun, Z.; Xue, J.; Ma, Z. A concise review of recent few-shot meta-learning methods. Neurocomputing 2021, 456, 463–468. [Google Scholar] [CrossRef]
- Snell, J.; Swersky, K.; Zemel, R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 2017, 30, 4080–4090. [Google Scholar]
- Yan, B.; Lang, C.; Cheng, G.; Han, J. Understanding negative proposals in generic few-shot object detection. IEEE Trans. Circ. Syst. Vid. 2024, 34, 5818–5829. [Google Scholar]
- Zeng, Q.; Geng, J.; Huang, K.; Jiang, W.; Guo, J. Prototype calibration with feature generation for few-shot remote sensing image scene classification. Remote Sens. 2021, 13, 2728. [Google Scholar] [CrossRef]
- Vinyals, O.; Blundell, C.; Lillicrap, T.; Wierstra, D. Matching networks for one shot learning. In Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3630–3638. [Google Scholar]
- Chen, Y.; Li, Y.; Mao, H.; Liu, G.; Chai, X.; Jiao, L. A Novel Discriminative Enhancement Method for Few-Shot Remote Sensing Image Scene Classification. Remote Sens. 2023, 15, 4588. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Sheng, G.; Yang, W.; Xu, T.; Sun, H. High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 2012, 33, 2395–2412. [Google Scholar] [CrossRef]
- Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P.; Hospedales, T. Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1199–1208. [Google Scholar]
- Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Li, Z.; Zhou, F.; Chen, F.; Li, H. Meta-sgd: Learning to learn quickly for few-shot learning. arXiv 2017, arXiv:1707.09835v2. [Google Scholar]
- Li, W.; Wang, L.; Xu, J.; Huo, J.; Gao, Y.; Luo, J. Revisiting Local Descriptor Based Image-To-Class Measure for Few-Shot Learning. arXiv 2019, arXiv:1903.12290v2. [Google Scholar]
- Chen, Y.; Li, Y.; Mao, H.; Chai, X.; Jiao, L. A Novel Deep Nearest Neighbor Neural Network for Few-Shot Remote Sensing Image Scene Classification. Remote Sens. 2023, 15, 666. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
Hardware Environment | CPU | Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz 32 GB |
GPU | NVIDIA Geforce RTX 2080Ti 11 GB | |
Software Environment | OS | Linux Ubuntu 18.04 LTS |
Programming Language | Python 3.6 | |
Deep Learning Framework | PyTorch 1.4.0 | |
CUDA | Cuda 10.0 |
Method | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
MatchingNet | 54.46% ± 0.77% | 67.87% ± 0.59% |
RelationNet | 58.61% ± 0.83% | 78.63% ± 0.52% |
MAML | 37.36% ± 0.69% | 45.94% ± 0.68% |
Meta-SGD | 60.63% ± 0.90% | 75.75% ± 0.65% |
DLA-MatchNet | 68.80% ± 0.70% | 81.63% ± 0.46% |
DN4 | 66.39% ± 0.86% | 83.24% ± 0.87% |
DN4AM | 70.75% ± 0.81% | 86.79% ± 0.51% |
DEADN4 | 73.56% ± 0.83% | 87.28% ± 0.50% |
Our Method | 73.84% ± 0.80% | 87.86% ± 0.51% |
Method | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
MatchingNet | 46.16% ± 0.71% | 66.73% ± 0.56% |
RelationNet | 48.89% ± 0.73% | 64.10% ± 0.54% |
MAML | 43.65% ± 0.68% | 58.43% ± 0.64% |
Meta-SGD | 50.52% ± 2.61% | 60.82% ± 2.00% |
DLA-MatchNet | 53.76% ± 0.62% | 63.01% ± 0.51% |
DN4 | 57.25% ± 1.01 | 79.74% ± 0.78% |
DN4AM | 65.49% ± 0.72% | 85.73% ± 0.47% |
DEADN4 | 67.27% ± 0.74% | 87.69% ± 0.44% |
Our Method | 68.12% ± 0.81% | 88.57% ± 0.52% |
Method | 5-Way 1-Shot | 5-Way 5-Shot |
---|---|---|
MatchingNet | 60.60% ± 0.68% | 82.99% ± 0.40% |
RelationNet | 60.54% ± 0.71% | 76.24% ± 0.34% |
MAML | 46.72% ± 0.55% | 79.88% ± 0.41% |
Meta-SGD | 51.54% ± 2.31% | 61.74% ± 2.02% |
DLA-MatchNet | 68.27% ± 1.83% | 79.89% ± 0.33% |
DN4 | 82.14% ± 0.80% | 96.02% ± 0.33% |
DN4AM | 85.05% ± 0.52% | 96.94% ± 0.21% |
DEADN4 | 86.89% ± 0.57% | 97.63% ± 0.19% |
Our Method | 87.34% ± 0.62% | 98.25% ± 0.15% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Li, Y.; Mao, H. A Novel Two-Stream Network for Few-Shot Remote Sensing Image Scene Classification. Remote Sens. 2025, 17, 1192. https://doi.org/10.3390/rs17071192
Lei Y, Li Y, Mao H. A Novel Two-Stream Network for Few-Shot Remote Sensing Image Scene Classification. Remote Sensing. 2025; 17(7):1192. https://doi.org/10.3390/rs17071192
Chicago/Turabian StyleLei, Yaolin, Yangyang Li, and Heting Mao. 2025. "A Novel Two-Stream Network for Few-Shot Remote Sensing Image Scene Classification" Remote Sensing 17, no. 7: 1192. https://doi.org/10.3390/rs17071192
APA StyleLei, Y., Li, Y., & Mao, H. (2025). A Novel Two-Stream Network for Few-Shot Remote Sensing Image Scene Classification. Remote Sensing, 17(7), 1192. https://doi.org/10.3390/rs17071192