You are currently viewing a new version of our website. To view the old version click .
Remote Sensing
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

18 December 2025

Global C-Factor Estimation: Inter-Model Comparison and SSP-RCP Scenario Projections to 2070

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
This article belongs to the Section Environmental Remote Sensing

Abstract

The cover-management factor (C-factor) plays a pivotal role in soil erosion control and is the most easily influenced by policymakers. Despite the availability of numerous C-factor estimation methods, systematic comparisons of their applicability and associated uncertainties remain limited, particularly for future projections under climate change scenarios. This study systematically evaluates multiple widely used C-factor estimation models and projects potential C-factor changes under future scenarios up to 2070, using 2015 as a baseline. Results reveal substantial spatial variability among models, with the land use/land cover-based model (CLu) showing the strongest correlation with the reference model (r = 0.960) and the lowest error (RMSE = 0.048). Using the CLu model, global average C-factor values are projected to increase across all Shared Socioeconomic Pathways–Representative Concentration Pathways (SSP-RCP) scenarios, rising from 0.077 to 0.079–0.082 by 2070. Statistically significant trends were observed in 28.0% (SSP1-RCP2.6) and 26.6% (SSP5-RCP8.5) of global land areas, identified as hotspot regions (HRs). In these HRs, mean C-factor values are expected to increase by 16.1% and 33.4%, respectively, relative to the 2015 baseline. Economic development analysis revealed distinct trajectories across income categories. Low-income countries (LICs, World Bank classification) exhibited a pronounced dependency on development pathways, with C-factor values decreasing by −50.3% under SSP1-RCP2.6 but increasing by +95.8% under SSP5-RCP8.5 compared to 2015. In contrast, lower-middle-income, upper-middle-income, and high-income countries exhibited consistent C-factor increases across all scenarios. These variations were closely linked to cropland dynamics, with cropland areas in LICs decreasing by 64.6% under SSP1-RCP2.6 but expanding under other scenarios and income categories between 2015 and 2070. These findings highlight the critical importance of sustainable land-use policies, particularly in LICs, which demonstrate the highest magnitude of both improvement and degradation under varying scenarios. This research provides a scientific foundation basis for optimizing soil conservation strategies and land-use planning under future climate and socioeconomic scenarios.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.