High-Resolution Retrieval of Radial Ocean Current Velocity from SAR Strip-Map Imagery
Highlights
- A novel high-resolution radial ocean surface current (OSC) velocity estimation method is proposed, utilizing Maximum A Posteriori (MAP) estimation based on signal modeling of the local Doppler power spectrum.
- Compared with existing algorithms, the proposed method substantially improves retrieval accuracy while effectively resolving the azimuth doppler ambiguity problem.
- Obtaining more precise and reliable radial OSC data from SAR is crucial for ocean current research.
- The proposed method is beneficial for high-resolution operational ocean monitoring utilizing SAR image data.
Abstract
1. Introduction
2. Doppler Frequency Shift Estimation Method
2.1. The Model and Method for Doppler Shift Estimation
2.2. Flowchart and Summary of the Proposed Algorithm
2.2.1. RAW Data Preprocessing
2.2.2. Correct the System Doppler Error
2.2.3. Estimate the System Noise and Antenna Pattern
2.2.4. Iteratively Estimate and
2.3. Doppler Frequency Shift Estimation Accuracy Analysis
3. The Real Data Experiments and Analysis
3.1. Data Acquisition
3.1.1. Sentinel-1 SAR Data
3.1.2. HYCOM Data
3.2. Results and Performance Analysis
3.2.1. Example 1
3.2.2. Example 2
4. Discussion
4.1. Accuracy Improvement and Model Consistency
4.2. High-Resolution Capabilities
4.3. Effective Suppression of Azimuth Ambiguity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, C.R.; John, R.A. Synthetic Aperture Radar: Marine User’s Manual; National Environmental Satellite: Suitland, MD, USA, 2004.
- Buck, C. An extension to the wide swath ocean altimeter concept. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 25–29 July 2005; Volume 8, pp. 5436–5439. [Google Scholar] [CrossRef]
- Quilfen, Y.; Chapron, B. Ocean surface wave-current signatures from satellite altimeter measurements. Geophy. Res. Lett. 2019, 46, 253–261. [Google Scholar] [CrossRef]
- Danilo, C.; Chapron, B.; Mouche, A.; Garello, R.; Collard, F. Comparisons between HF radar and SAR current measurements in the Iroise Sea. In Proceedings of the OCEANS 2007-Europe, Aberdeen, UK, 18–21 June 2007; Volume 6, pp. 1–5. [Google Scholar] [CrossRef]
- Hansen, M.W.; Collard, F.; Dagestad, K.F.; Johannessen, J.A.; Fabry, P.; Chapron, B. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3582–3592. [Google Scholar] [CrossRef]
- Chapron, B.; Collard, F.; Ardhuin, F. Direct measurements of ocean surface velocity from space: Interpretation and validation. J. Geophys. Res. Oceans 2005, 110, C07008. [Google Scholar] [CrossRef]
- Romeiser, R.; Suchandt, S.; Runge, H.; Steinbrecher, U.; Grunler, S. First analysis of TerraSAR-X along-track InSAR-derived current fields. IEEE Trans. Geosci. Remote Sens. 2009, 48, 820–829. [Google Scholar] [CrossRef]
- Krug, M.; Mouche, A.; Collard, F.; Johannessen, J.A.; Chapron, B. Mapping the Agulhas Current from space: An assessment of ASAR surface current velocities. J. Geophys. Res. Oceans 2010, 115, C10026. [Google Scholar] [CrossRef]
- Moiseev, A.; Johnsen, H.; Hansen, M.W.; Johannessen, J.A. Evaluation of radial ocean surface currents derived from Sentinel-1 IW Doppler shift using coastal radar and Lagrangian surface drifter observations. J. Geophys. Res. Oceans 2020, 125, e2019JC015743. [Google Scholar] [CrossRef]
- Essen, H.H.; Gurgel, K.W.; Schlick, T. On the accuracy of current measurements by means of HF radar. IEEE J. Ocean. Eng. 2002, 25, 472–480. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A.; Barnett, T.P. Remote sensing of ocean currents. Science 1989, 246, 1282–1285. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Romeiser, R.; Runge, H.; Suchandt, S.; Kahle, R.; Rossi, C.; Bell, P.S. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2759–2772. [Google Scholar] [CrossRef]
- Romeiser, R.; Breit, H.; Eineder, M.; Runge, H.; Flament, P.; De Jong, K.; Vogelzang, J. Current measurements by SAR along-track interferometry from a space shuttle. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2315–2324. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, J.; Han, B.; Wang, X. Study on the elimination method of wind field influence in retrieving a sea surface current field. Sensors 2022, 22, 8781. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Zebker, H.A. Interferometric radar measurement of ocean surface currents. Nature 1987, 328, 707–709. [Google Scholar] [CrossRef]
- Wollstadt, S.; López-Dekker, P.; De Zan, F.; Younis, M. Design principles and considerations for spaceborne ATI SAR-based observations of ocean surface velocity vectors. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4500–4519. [Google Scholar] [CrossRef]
- Shuchman, R.A.; Rufenach, C.L.; Gonzalez, F.I.; Klooster, A. The feasibility of measurement of ocean surface currents using synthetic aperture radar. In Proceedings of the Thirteenth International Symposium on Remote Sensing of the Environment, Ann Arbor, MI, USA, 23–27 April 1979; Volume 4. [Google Scholar]
- Hutt, D.; Stockhausen, J.; Osler, J.; Mosher, D. Capability of Radarsat-1 for estimation of ocean surface current on the Scotian Shelf. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Toronto, ON, Canada, 24–28 June 2002; Volume 4, pp. 2135–2137. [Google Scholar] [CrossRef]
- Bourbigot, M.; Johnsen, H.; Piantanida, R.; Hajduch, G.; Poullaouec, J. Sentinel-1 Product Definition. 2016, ESA Unclassified–For Official Use. Available online: https://sentiwiki.copernicus.eu/__attachments/1673968/S1-RS-MDA-52-7441%20-%20Sentinel-1%20Product%20Specification%202023%20-%203.14.1.pdf (accessed on 18 February 2021).
- Renga, A.; Moccia, A. Use of Doppler parameters for ship velocity computation in SAR images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3995–4011. [Google Scholar] [CrossRef]
- Bamler, R. Doppler frequency estimation and the Cramer-Rao bound. IEEE Trans. Geosci. Remote Sens. 1991, 29, 385–390. [Google Scholar] [CrossRef]
- Johnsen, H.; Nilsen, V.; Engen, G.; Mouche, A.A.; Collard, F. Ocean doppler anomaly and ocean surface current from Sentinel 1 tops mode. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; Volume 7, pp. 3993–3996. [Google Scholar] [CrossRef]
- Moiseev, A.; Johannessen, J.A.; Johnsen, H. Towards retrieving reliable ocean surface currents in the coastal zone from the Sentinel-1 Doppler shift observations. J. Geophys. Res. Oceans 2022, 127, e2021JC018201. [Google Scholar] [CrossRef]
- Madsen, S.N. Estimating the Doppler centroid of SAR data. IEEE Trans. Aerosp. Electron. Syst. 2002, 25, 134–140. [Google Scholar] [CrossRef]
- Engen, G.; Johnsen, H.; Larsen, Y. Sentinel-1 geophysical doppler product-performance and application. In Proceedings of the EUSAR 2014: 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Villano, M.; Krieger, G. Spectral-based estimation of the local azimuth ambiguity-to-signal ratio in SAR images. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2304–2313. [Google Scholar] [CrossRef]
- Sun, K.; Diao, L.; Zhao, Y.; Zhao, W.; Xu, Y.; Chong, J. Impact of SAR azimuth ambiguities on Doppler velocity estimation performance: Modeling and analysis. Remote Sens. 2023, 15, 1198. [Google Scholar] [CrossRef]
- Azouz, A.; Fouad, M.; ELbohy, A.; Abdalla, A.; Mashaly, A. SAR image formation scheme implementation and endorsement sprouting from Level-0 data decoding. Egypt. J. Remote Sens. Space Sci. 2023, 26, 253–263. [Google Scholar] [CrossRef]
- Raney, R.K.; Runge, H.; Bamler, R.; Cumming, I.G.; Wong, F.H. Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 2002, 32, 786–799. [Google Scholar] [CrossRef]
- Chitroub, S.; Houacine, A.; Sansal, B. Statistical characterisation and modelling of SAR images. Signal Process. 2002, 82, 69–92. [Google Scholar] [CrossRef]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Raleigh, NC, USA, 2004. [Google Scholar]
- Meng, H.; Wang, X.; Chong, J.; Wei, X.; Kong, W. Doppler spectrum-based NRCS estimation method for low-scattering areas in ocean SAR images. Remote Sens. 2017, 9, 219. [Google Scholar] [CrossRef]
- Ocean Data Lab. S-1 RVL DIL4: Algorithm Description Document. ESRIN: ESA. 2015. Available online: https://sentiwiki.copernicus.eu/__attachments/1673968/S1-TN-NRT-53-0658%20-%20Sentinel-1%20doppler%20and%20Ocean%20Radial%20Velocity%20(RVL)%20ATBD%202024%20-%201.7.pdf?inst-v=b88bce31-6a7b-41d2-99d5-181e8ab7e5d5 (accessed on 15 July 2015).
- Mouche, A.A.; Collard, F.; Chapron, B.; Dagestad, K.F.; Guitton, G.; Johannessen, J.A.; Hansen, M.W. On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2901–2909. [Google Scholar] [CrossRef]
- Meng, H.; Wang, X.; Chong, J. An Azimuth antenna pattern estimation method based on Doppler spectrum in SAR ocean images. Sensors 2018, 18, 1081. [Google Scholar] [CrossRef]
- Chassignet, E.P.; Hurlburt, H.E.; Smedstad, O.M.; Halliwell, G.R.; Hogan, P.J.; Wallcraft, A.J.; Bleck, R. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Marine Syst. 2007, 65, 60–83. [Google Scholar] [CrossRef]










| Simulation Parameter | Simulation 1 | Simulation 2 | Simulation 3 |
|---|---|---|---|
| SNR (Signal to Noise Ratio) (dB) | 3~9.5 | 3~9.5 | 7.8 |
| Estimate Doppler shift (Hz) | 0 | 0 | 0 |
| Simulation repeat number | 1000 | 1000 | 1000 |
| Amplitude of the main lobe signal | 1 | 1 | 1 |
| Left AASR (dB) | / | −12.45 | −16~−7 |
| Right AASR (dB) | / | / | / |
| PRF (Hz) | 1717 | 1717 | 1717 |
| The number of azimuth Doppler spectrum bins | 1000 | 1000 | 1000 |
| Evaluation Metrics | Sentinel-1 RVL Product | The Proposed Method |
|---|---|---|
| Azimuth Resolution (m) | 1000 | 455 |
| Range Resolution (m) | 1000 | 575 |
| Azimuth Correlation Length (m) | 42,000 | 40,950 |
| Range Correlation Length (m) | 7950 | 3157 |
| Equivalent Correlation Length (m) | 25,099.8 | 16,093.75 |
| High-Frequency Spectral Energy Ratio | 0.048 | 0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lai, T.; Wang, X. High-Resolution Retrieval of Radial Ocean Current Velocity from SAR Strip-Map Imagery. Remote Sens. 2025, 17, 3987. https://doi.org/10.3390/rs17243987
Wang J, Lai T, Wang X. High-Resolution Retrieval of Radial Ocean Current Velocity from SAR Strip-Map Imagery. Remote Sensing. 2025; 17(24):3987. https://doi.org/10.3390/rs17243987
Chicago/Turabian StyleWang, Jian, Tao Lai, and Xiaoqing Wang. 2025. "High-Resolution Retrieval of Radial Ocean Current Velocity from SAR Strip-Map Imagery" Remote Sensing 17, no. 24: 3987. https://doi.org/10.3390/rs17243987
APA StyleWang, J., Lai, T., & Wang, X. (2025). High-Resolution Retrieval of Radial Ocean Current Velocity from SAR Strip-Map Imagery. Remote Sensing, 17(24), 3987. https://doi.org/10.3390/rs17243987

