Comparison of a Semiempirical Algorithm and an Artificial Neural Network for Soil Moisture Retrieval Using CYGNSS Reflectometry Data
Highlights
- We deliver the first unified benchmark of a semi-empirical inversion versus an ANN for CYGNSS-based soil moisture; the ANN achieves 0.047 m3 m−3 RMSE with R ≈ 0.9 and generally surpasses the semi-empirical model across most climate–land-cover strata; results are based on a fine-grained climate × land-cover stratification.
- Auxiliary variables and stratification reveal large gains (e.g., 44–47% RMSE reduction in several vegetated subtropical/tropical strata) and markedly lower normalized RMSE (<1) for ANN in most strata.
- For HydroGNSS operations, an ANN model can boost accuracy and data yield under more relaxed quality filtering, while the semi-empirical model remains a robust, interpretable fallback; a hybrid strategy is recommended.
- Closing remaining gaps requires more training data in under-sampled high-latitude regimes; extended HydroGNSS coverage will help supply these data.
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.1.1. CYGNSS
2.1.2. SMAP
2.1.3. MODIS
2.1.4. Static Auxiliary Data
2.1.5. ISMN
2.2. Data Pre-Processing and Stratification
2.2.1. Pre-Processing
2.2.2. Stratification Strategy
2.3. Algorithms
2.3.1. Semiempirical Model
2.3.2. Artificial Neural Network (ANN)
3. Results
3.1. Semiempirical
3.2. ANN
3.3. Validation Against ISMN Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.M.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on remote sensing using GNSS bistatic radar of opportunity. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef]
- Ruf, C.S.; Unwin, M.; Dickinson, J.; Rose, R.; Rose, D.; Vincent, M.A.; Lyons, A.; Gleason, S.; Jelenak, Z.; Said, F.; et al. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Pierdicca, N.; Guerriero, L.; Giusto, R.; Brogioni, M.; Egido, A. SAVERS: A simulator of GNSS reflections from bare and vegetated soils. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6542–6554. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E.; Larson, K.M.; Zavorotny, V.U. Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture. IEEE Trans. Geosci. Remote Sens. 2014, 52, 537–543. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E. Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Pierdicca, N.; Costantini, F.; Floury, N. Analysis of cygnss data for soil moisture retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2227–2235. [Google Scholar] [CrossRef]
- Guerriero, L.; Martín, F.; Mollfulleda, A.; Paloscia, S.; Pierdicca, N.; Santi, E.; Floury, N. Ground-Based Remote Sensing of Forests Exploiting GNSS Signals. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6844–6860. [Google Scholar] [CrossRef]
- Pierdicca, N.; Comite, D.; Camps, A.; Carreno-Luengo, H.; Cenci, L.; Clarizia, M.P.; Costantini, F.; Dente, L.; Guerriero, L.; Mollfulleda, A.; et al. The Potential of Spaceborne GNSS Reflectometry for Soil Moisture, Biomass, and Freeze-Thaw Monitoring: Summary of a European Space Agency-funded study. IEEE Geosci. Remote Sens. Mag. 2022, 10, 8–38. [Google Scholar] [CrossRef]
- Azemati, A.; Melebari, A.; Campbell, J.D.; Walker, J.P.; Moghaddam, M. GNSS-R Soil Moisture Retrieval for Flat Vegetated Surfaces Using a Physics-Based Bistatic Scattering Model and Hybrid Global/Local Optimization. Remote Sens. 2022, 14, 3129. [Google Scholar] [CrossRef]
- Setti, P.T.; Tabibi, S. Evaluation of Spire GNSS-R reflectivity from multiple GNSS constellations for soil moisture estimation. Int. J. Remote Sens. 2023, 44, 6422–6441. [Google Scholar] [CrossRef]
- Yueh, S.H.; Shah, R.; Chaubell, M.J.; Hayashi, A.; Xu, X.; Colliander, A. A Semiempirical Modeling of Soil Moisture, Vegetation, and Surface Roughness Impact on CYGNSS Reflectometry Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Bu, J.; Wang, Q.; Wang, Z.; Fan, S.; Liu, X.; Zuo, X. Land Remote Sensing Applications Using Spaceborne GNSS Reflectometry: A Comprehensive Overview. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 12811–12841. [Google Scholar] [CrossRef]
- Asgarimehr, M.; Entekhabi, D.; Camps, A. Diurnal Vegetation Moisture Cycle in the Amazon and Response to Water Stress. Geophys. Res. Lett. 2024, 51, e2024GL111462. [Google Scholar] [CrossRef]
- Setti, P.; Tabibi, S. Comprehensive Analysis of CYGNSS GNSS-R Data for Enhanced Soil Moisture Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 663–679. [Google Scholar] [CrossRef]
- Zhao, D.; Asgarimehr, M.; Heidler, K.; Wickert, J.; Zhu, X.X.; Mou, L. Deep Learning-Based GNSS-R Global Vegetation Water Content: Dataset, Estimation, and Uncertainty. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 17386–17404. [Google Scholar] [CrossRef]
- Song, S.; Zhu, Y.; Qu, X.; Tao, T. Spaceborne GNSS-R for Sensing Soil Moisture Using CYGNSS Considering Land Cover Type. Water Resour. Manag. 2025, 39, 3499–3519. [Google Scholar] [CrossRef]
- Al-Khaldi, M.M.; Johnson, J.T.; O’Brien, A.J.; Balenzano, A.; Mattia, F. Time-Series Retrieval of Soil Moisture Using CYGNSS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4322–4331. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Luzi, G.; Crosetto, M. Above-Ground Biomass Retrieval over Tropical Forests: A Novel GNSS-R Approach with CyGNSS. Remote Sens. 2020, 12, 1368. [Google Scholar] [CrossRef]
- Eroglu, O.; Kurum, M.; Boyd, D.; Gurbuz, A.C. High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sens. 2019, 11, 2272. [Google Scholar] [CrossRef]
- Santi, E.; Clarizia, M.P.; Comite, D.; Dente, L.; Guerriero, L.; Pierdicca, N.; Floury, N. Combining Cygnss and Machine Learning for Soil Moisture and Forest Biomass Retrieval in View of the ESA Scout Hydrognss Mission. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 7433–7436. [Google Scholar] [CrossRef]
- Santi, E.; Comite, D.; Dente, L.; Guerriero, L.; Pierdicca, N.; Clarizia, M.P.; Floury, N. Global soil moisture mapping at 5 km by combining GNSS reflectometry and machine learning in view of HydroGNSS. Sci. Remote Sens. 2024, 10, 100177. [Google Scholar] [CrossRef]
- Campbell, J.D.; Akbar, R.; Azemati, A.; Bringer, A.; Comite, D.; Dente, L.; Gleason, S.T.; Guerriero, L.; Hodges, E.; Johnson, J.T.; et al. Intercomparison of Models for CYGNSS Delay-Doppler Maps at a Validation Site in the San Luis Valley of Colorado. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 2001–2004. [Google Scholar] [CrossRef]
- Yang, C.; Mao, K.; Guo, Z.; Shi, J.; Bateni, S.M.; Yuan, Z. Review of GNSS-R Technology for Soil Moisture Inversion. Remote Sens. 2024, 16, 1193. [Google Scholar] [CrossRef]
- Unwin, M.J.; Pierdicca, N.; Cardellach, E.; Rautiainen, K.; Foti, G.; Blunt, P.; Guerriero, L.; Santi, E.; Tossaint, M. An Introduction to the HydroGNSS GNSS Reflectometry Remote Sensing Mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6987–6999. [Google Scholar] [CrossRef]
- Gleason, S.; O’Brien, A.; Russel, A.; Al-Khaldi, M.M.; Johnson, J.T. Geolocation, Calibration and Surface Resolution of CYGNSS GNSS-R Land Observations. Remote Sens. 2020, 12, 1317. [Google Scholar] [CrossRef]
- Pascual, D.; Clarizia, M.P.; Ruf, C.S. Spaceborne Demonstration of GNSS-R Scattering Cross Section Sensitivity to Wind Direction. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Lowe, S.; Zuffada, C.; Esterhuizen, S.; Oveisgharan, S. Spaceborne GNSS-R from the SMAP Mission: First Assessment of Polarimetric Scatterometry over Land and Cryosphere. Remote Sens. 2017, 9, 362. [Google Scholar] [CrossRef]
- Al-Khaldi, M.M.; Johnson, J.T.; Gleason, S.; Loria, E.; O’Brien, A.J.; Yi, Y. An Algorithm for Detecting Coherence in Cyclone Global Navigation Satellite System Mission Level-1 Delay-Doppler Maps. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4454–4463. [Google Scholar] [CrossRef]
- ESA Land Cover CCI Project Team. ESA CCI Land Cover—Annual Global Land Cover Maps (1992–2015), Version 2.0.7. 2017. Available online: https://climate.esa.int/en/projects/land-cover/ (accessed on 13 October 2025).
- U.S. Geological Survey, EROS Center. GTOPO30 Readme; Technical report; U.S. Geological Survey: Sioux Falls, SD, USA, 2018.
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; Oevelen, P.V.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiová, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–21. [Google Scholar] [CrossRef]
- Ruf, C.S. Chapter 10—Level 3 Soil Moisture Product. In CYGNSS Handbook, 2nd ed.; University of Michigan/NASA CYGNSS Mission: Ann Arbor, MI, USA, 2022; Chapter 10. [Google Scholar] [CrossRef]
- Chan, S.; Dunbar, R.S. Soil Moisture Active Passive (SMAP) Mission Level 3 Passive Soil Moisture Product Specification Document Version 8.0 R18 Release; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2021; JPL D-72551. [Google Scholar]
- Goward, S.N.; Xue, Y.; Czajkowski, K.P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sens. Environ. 2002, 79, 225–242. [Google Scholar] [CrossRef]
- Pablos, M.; Piles, M.; Sanchez, N.; Gonzalez-Gambau, V.; Vall-Llossera, M.; Camps, A.; Martinez-Fernandez, J. A sensitivity study of land surface temperature to soil moisture using in-situ and spaceborne observations. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3267–3269. [Google Scholar] [CrossRef]
- Noguera, I.; Vicente-Serrano, S.M.; Peña-Angulo, D.; Domínguez-Castro, F.; Juez, C.; Tomás-Burguera, M.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Halifa-Marín, A.; Fernández-Duque, B.; et al. Assessment of vapor pressure deficit variability and trends in Spain and possible connections with soil moisture. Atmos. Res. 2023, 285, 106666. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.O.; van Velthuizen, H.; Chiozza, F.; Franceschini, G.; Henry, M.; Muchoney, D.; Tramberend, S. Global Agro-Ecological Zones (GAEZ v4)—Model Documentation; Technical Report; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy; IIASA: Laxenburg, Austria, 2021. [Google Scholar] [CrossRef]
- Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V. Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2059–2070. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, S.; Li, W.; Nan, Y.; Peng, J.; Ma, Z.; Zhou, X.; Xu, J.; Bai, W.; Liu, Q.; et al. Using Robust Regression to Retrieve Soil Moisture from CyGNSS Data. Remote Sens. 2023, 15, 3669. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.W.V.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]









| Category | Variables/Data |
|---|---|
| CYGNSS variables | Reflectivity; Kurtosis; Signal-to-Noise Ratio (SNR); Trailing Edge Width (TE); Incidence Angle (); Coherency Index |
| Auxiliary data | Land Cover; AGB; Topographic data (HEIGHT, SLOPE, rmsHEIGHT); VWC & VOD from SMAP; NDVI & NDWI from MODIS |
| Reference SM | SMAP soil moisture; ISMN soil moisture |
| Variable | Model(s) |
|---|---|
| Incidence angle () | ANN, SE |
| Reflectivity | ANN, SE |
| Signal-to-Noise Ratio (SNR) | ANN |
| Kurtosis | ANN |
| Trailing-Edge width (TE) | ANN |
| Coherency index | ANN |
| Type of Coverage | Original Class | New Class |
|---|---|---|
| No Data | 0 | 0 |
| Cultivated land | 10, 11, 12, 20 | 10 |
| Cultivated land alternating with natural vegetation | 30, 40 | 30 |
| Evergreen forest | 50, 70, 71, 72, 90 | 50 |
| Deciduous forest | 60, 61, 62, 80, 81, 82 | 60 |
| Forest alternating with spontaneous vegetation | 100, 110, 160, 170 | 100 |
| Natural vegetation | 120, 121, 122 | 120 |
| Meadows, mosses and lichens | 130, 140 | 130 |
| Not very dense vegetation | 150, 151, 152, 153 | 150 |
| Marshy areas | 180 | 180 |
| Urban areas | 190 | 190 |
| Barren areas | 200, 201, 202 | 200 |
| Water | 210 | 210 |
| Ice | 220 | 220 |
| SMAP Quality Flag | RMSE (Linear) | RMSE (dB) | Correlation |
|---|---|---|---|
| Recommended | 0.0317 | 3.88 | 0.76 |
| Successful Retrieval | 0.0306 | 4.07 | 0.76 |
| SMAP Quality Flag | Number of Samples (n) | RMSE (m3 m−3) | Correlation |
|---|---|---|---|
| Recommended | 0.067 | 0.75 | |
| Successful Retrieval | 0.075 | 0.82 |
| Inputs | Recommended Quality Flag | Successful Retrieval Quality Flag | ||||
|---|---|---|---|---|---|---|
| Samples () | RMSE (m3 m−3) | Samples () | RMSE (m3 m−3) | |||
| CYGNSS variables | 0.092 | 0.42 | 0.119 | 0.50 | ||
| + DEM, SLOPE, rmsHeight, AGB | 0.060 | 0.80 | 0.071 | 0.85 | ||
| + LCC | 0.058 | 0.82 | 0.069 | 0.87 | ||
| + VWC, VOD | 0.051 | 0.87 | 0.062 | 0.89 | ||
| + NDVI, NDWI | 0.046 | 0.85 | 0.055 | 0.88 | ||
| + VWC, VOD, NDVI, NDWI | 0.043 | 0.87 | 0.051 | 0.89 | ||
| Network/Station | RMSE (m3 m−3) | R | ||||
|---|---|---|---|---|---|---|
| SMAP | ANN | SE | SMAP | ANN | SE | |
| OzNet network | 0.075 | 0.066 | 0.077 | 0.71 | 0.68 | 0.47 |
| OzNet Wynella station | 0.057 | 0.043 | 0.052 | 0.86 | 0.81 | 0.46 |
| SCAN Walnut Gulch station | 0.039 | 0.061 | 0.043 | 0.73 | 0.24 | 0.54 |
| SCAN Crossroads station | 0.031 | 0.029 | 0.077 | 0.54 | 0.51 | 0.40 |
| Tropics, Lowland | Tropics, Highland | Subtropics, Warm | Subtropics, Mod. Cool | Subtropics, Cool | Temperate, Moderate | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ANN | SE | ANN | SE | ANN | SE | ANN | SE | ANN | SE | ANN | SE | |
| Cultivated land | 0.053 | 0.089 | 0.075 | 0.102 | 0.047 | 0.072 | 0.051 | 0.089 | 0.047 | 0.084 | 0.058 | 0.081 |
| Cultivated/natural vegetation | 0.062 | 0.089 | 0.068 | 0.103 | 0.047 | 0.083 | 0.060 | 0.090 | 0.074 | 0.082 | 0.063 | 0.083 |
| Evergreen forest | 0.091 | 0.090 | 0.090 | 0.102 | 0.087 | 0.088 | 0.077 | 0.084 | 0.080 | 0.086 | 0.089 | 0.073 |
| Deciduous forest | 0.054 | 0.092 | 0.088 | 0.106 | 0.093 | 0.087 | 0.091 | 0.081 | 0.075 | 0.079 | 0.063 | 0.077 |
| Spontaneous forest/vegetation | 0.064 | 0.089 | 0.080 | 0.084 | 0.100 | 0.094 | 0.071 | 0.087 | 0.075 | 0.073 | 0.050 | 0.042 |
| Natural vegetation | 0.044 | 0.074 | 0.047 | 0.070 | 0.034 | 0.061 | 0.037 | 0.062 | 0.031 | 0.051 | 0.095 | 0.049 |
| Meadows, mosses and lichens | 0.038 | 0.072 | 0.065 | 0.070 | 0.034 | 0.055 | 0.049 | 0.090 | 0.043 | 0.072 | 0.053 | 0.081 |
| Not very dense vegetation | 0.031 | 0.047 | 0.038 | 0.047 | 0.029 | 0.043 | 0.035 | 0.049 | 0.038 | 0.047 | NaN | NaN |
| Barren areas | 0.024 | 0.035 | 0.055 | 0.050 | 0.021 | 0.034 | 0.030 | 0.048 | 0.038 | 0.054 | 0.026 | 0.047 |
| Tropics, Lowland | Tropics, Highland | Subtropics, Warm | Subtropics, Mod. Cool | Subtropics, Cool | Temperate, Moderate | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ANN | SE | ANN | SE | ANN | SE | ANN | SE | ANN | SE | ANN | SE | |
| Cultivated land | 0.86 | 0.55 | 0.73 | 0.44 | 0.81 | 0.54 | 0.86 | 0.56 | 0.84 | 0.63 | 0.82 | 0.57 |
| Cultivated land/natural vegetation | 0.90 | 0.64 | 0.78 | 0.32 | 0.90 | 0.68 | 0.82 | 0.45 | 0.73 | 0.39 | 0.83 | 0.58 |
| Evergreen forest | 0.65 | 0.38 | 0.65 | 0.33 | 0.64 | 0.39 | 0.69 | 0.40 | 0.80 | 0.51 | 0.57 | 0.55 |
| Deciduous forest | 0.85 | 0.52 | 0.65 | 0.37 | 0.63 | 0.48 | 0.71 | 0.41 | 0.66 | 0.35 | 0.75 | 0.41 |
| Spontaneous forest/vegetation | 0.90 | 0.61 | 0.80 | 0.47 | 0.72 | 0.56 | 0.81 | 0.55 | 0.63 | 0.25 | 0.68 | 0.74 |
| Natural vegetation | 0.87 | 0.57 | 0.82 | 0.50 | 0.86 | 0.48 | 0.81 | 0.45 | 0.76 | 0.41 | 0.39 | 0.45 |
| Meadows, mosses and lichens | 0.89 | 0.64 | 0.68 | 0.51 | 0.88 | 0.66 | 0.88 | 0.52 | 0.86 | 0.61 | 0.83 | 0.28 |
| Not very dense vegetation | 0.78 | 0.49 | 0.58 | 0.52 | 0.74 | 0.40 | 0.71 | 0.33 | 0.64 | 0.21 | NaN | NaN |
| Barren areas | 0.82 | 0.50 | 0.69 | 0.57 | 0.86 | 0.38 | 0.77 | 0.24 | 0.61 | 0.17 | 0.58 | 0.23 |
| Tropics, Lowland | Tropics, Highland | Subtropics, Warm | Subtropics, Mod. Cool | Subtropics, Cool | Temperate, Moderate | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| P.I | N | P.I | N | P.I | N | P.I | N | P.I | N | P.I | N | |
| Cultivated land | 40.45 | 67.47 | 26.47 | 6.08 | 34.72 | 35.12 | 42.70 | 39.54 | 44.05 | 11.62 | 28.40 | 15.14 |
| Cultivated/natural vegetation | 30.34 | 11.26 | 33.98 | 1.94 | 43.37 | 2.73 | 33.33 | 6.73 | 9.76 | 1.48 | 24.10 | 0.69 |
| Evergreen forest | −1.11 | 54.84 | 11.76 | 8.55 | 1.14 | 4.29 | 8.33 | 20.15 | 6.98 | 14.74 | −21.92 | 1.07 |
| Deciduous forest | 41.30 | 51.06 | 16.98 | 3.47 | −6.90 | 7.70 | −12.35 | 6.05 | 5.06 | 2.56 | 18.18 | 4.20 |
| Spontaneous forest/vegetation | 28.09 | 12.15 | 4.76 | 1.96 | −6.38 | 2.21 | 18.39 | 1.60 | −2.74 | 0.71 | −19.05 | 0.05 |
| Natural vegetation | 40.54 | 71.81 | 32.86 | 6.46 | 44.26 | 31.15 | 40.32 | 55.98 | 39.22 | 17.88 | −93.88 | 0.08 |
| Meadows, mosses and lichens | 47.22 | 26.41 | 7.14 | 5.99 | 38.18 | 24.18 | 45.56 | 27.68 | 40.28 | 18.68 | 34.57 | 3.11 |
| Not very dense vegetation | 34.04 | 11.08 | 19.15 | 2.76 | 32.56 | 54.12 | 28.57 | 19.35 | 19.15 | 4.97 | NaN | NaN |
| Barren areas | 31.43 | 31.44 | −10.00 | 4.75 | 38.24 | 241.05 | 37.50 | 47.66 | 29.63 | 15.02 | 44.68 | 1.14 |
| Tropics, Lowland | Tropics, Highland | Subtropics, Warm | Subtropics, Mod. Cool | Subtropics, Cool | Temperate, Moderate | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ANN | SE | ANN | SE | ANN | SE | ANN | SE | ANN | SE | ANN | SE | |
| Cultivated land | 0.72 | 1.21 | 0.82 | 1.12 | 0.78 | 1.19 | 0.72 | 1.25 | 0.82 | 1.47 | 0.94 | 1.32 |
| Cultivated land/natural vegetation | 0.90 | 1.30 | 0.71 | 1.07 | 0.84 | 1.49 | 0.81 | 1.21 | 1.11 | 1.23 | 0.92 | 1.21 |
| Evergreen forest | 1.19 | 1.18 | 1.08 | 1.22 | 1.21 | 1.23 | 1.01 | 1.10 | 0.96 | 1.03 | 0.78 | 0.64 |
| Deciduous forest | 0.66 | 1.12 | 0.90 | 1.08 | 1.07 | 1.00 | 1.20 | 1.07 | 1.03 | 1.08 | 0.81 | 0.99 |
| Spontaneous forest/vegetation | 0.87 | 1.21 | 1.15 | 1.21 | 1.40 | 1.32 | 0.94 | 1.15 | 1.28 | 1.25 | 0.92 | 0.77 |
| Natural vegetation | 0.65 | 1.10 | 0.72 | 1.08 | 0.76 | 1.37 | 0.77 | 1.29 | 0.87 | 1.44 | 3.31 | 1.71 |
| Meadows, mosses and lichens | 0.70 | 1.32 | 1.01 | 1.09 | 0.81 | 1.30 | 0.74 | 1.36 | 0.81 | 1.35 | 0.94 | 1.44 |
| Not very dense vegetation | 0.71 | 1.08 | 1.09 | 1.35 | 0.79 | 1.18 | 0.90 | 1.25 | 1.00 | 1.23 | NaN | NaN |
| Barren areas | 1.03 | 1.51 | 2.25 | 2.04 | 1.21 | 1.96 | 1.08 | 1.72 | 0.93 | 1.32 | 0.89 | 1.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izadgoshasb, H.; Santi, E.; Cordari, F.; Guerriero, L.; Chiavini, L.; Ambrogioni, V.; Pierdicca, N. Comparison of a Semiempirical Algorithm and an Artificial Neural Network for Soil Moisture Retrieval Using CYGNSS Reflectometry Data. Remote Sens. 2025, 17, 3636. https://doi.org/10.3390/rs17213636
Izadgoshasb H, Santi E, Cordari F, Guerriero L, Chiavini L, Ambrogioni V, Pierdicca N. Comparison of a Semiempirical Algorithm and an Artificial Neural Network for Soil Moisture Retrieval Using CYGNSS Reflectometry Data. Remote Sensing. 2025; 17(21):3636. https://doi.org/10.3390/rs17213636
Chicago/Turabian StyleIzadgoshasb, Hamed, Emanuele Santi, Flavio Cordari, Leila Guerriero, Leonardo Chiavini, Veronica Ambrogioni, and Nazzareno Pierdicca. 2025. "Comparison of a Semiempirical Algorithm and an Artificial Neural Network for Soil Moisture Retrieval Using CYGNSS Reflectometry Data" Remote Sensing 17, no. 21: 3636. https://doi.org/10.3390/rs17213636
APA StyleIzadgoshasb, H., Santi, E., Cordari, F., Guerriero, L., Chiavini, L., Ambrogioni, V., & Pierdicca, N. (2025). Comparison of a Semiempirical Algorithm and an Artificial Neural Network for Soil Moisture Retrieval Using CYGNSS Reflectometry Data. Remote Sensing, 17(21), 3636. https://doi.org/10.3390/rs17213636

