Semi-Automated Extraction of Active Fire Edges from Tactical Infrared Observations of Wildfires
Highlights
- This article presents an image processing method to semi-automatically track wildfire progression.
- The algorithm was successfully applied to aerial infrared imagery acquired during tactical fire management operations.
- These results illustrate how tactical data can be used in fire behavior studies.
- The proposed method may facilitate real-time analysis of tactical information during wildfire emergencies.
Abstract
1. Introduction
2. Materials and Methods
2.1. Remote Sensing Data
2.2. Image Processing Background
2.2.1. Thresholding and Edge Detection
2.2.2. Morphological Functions
2.2.3. Structure Analysis
2.3. Identification of Fire Area and Fire Edges
2.3.1. Canny Edge Detector
2.3.2. OTSU’s Binarization Followed by Canny Edge Detector
2.3.3. Multi-Thresholding Followed by Canny Edge Detector
2.3.4. Alternate Intensity Thresholding
2.4. Polygonization for Quality Assessment
3. Results
3.1. Method Comparison
3.2. Semi-Automated Fire Edge Detection Algorithm
3.3. Performance Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CalFiDE | California Fire Dynamics Experiment |
| CAL FIRE | California Department of Forestry and Fire Protection |
| FOM | Figure of Merit |
| FRP | Fire Radiative Power |
| GIS | Geographic Information System |
| LTM | Landsat Thematic Mapper |
| LWIR | Long-Wave Infrared |
| MODIS | Moderate Resolution Infrared Sensor |
| NDBR | Normalized Difference Burn Ratio |
| NDVI | Normalized Difference Vegetation Index |
| ROS | Rate of Spread |
| RxCADRE | Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment |
References
- Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 2021, 165, 43. [Google Scholar] [CrossRef]
- Hantson, S.; Andela, N.; Goulden, M.L.; Randerson, J.T. Human-ignited fires result in more extreme fire behavior and ecosystem impacts. Nat. Commun. 2022, 13, 2717. [Google Scholar] [CrossRef]
- Stephens, S.L.; Weise, D.R.; Fry, D.L.; Keiffer, R.J.; Dawson, J.; Koo, E.; Potts, J.; Pagni, P.J. Measuring the rate of spread of chaparral prescribed fires in Northern California. Fire Ecol. 2008, 4, 74–86. [Google Scholar] [CrossRef]
- Rudz, R.; Chetehouna, K.; Sèro-Guillaume, O.; Pastor, E.; Planas, E. Comparison of two methods for estimating fire positions and the rate of spread of linear flame fronts. Meas. Sci. Technol. 2009, 20, 115501. [Google Scholar] [CrossRef]
- Loboda, T.V.; Csiszar, I.A. Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product. Glob. Planet. Change 2007, 65, 258–273. [Google Scholar] [CrossRef]
- Viedma, O.; Quesada, J.; Torres, I.; De Santis, A.; Moreno, J.M. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 2015, 18, 237–250. [Google Scholar] [CrossRef]
- Rudz, S.; Chetehouna, K.; Hafiane, A.; Laurent, H.; Sèro-Guillaume, O. Investigation of a novel image segmentation method dedicated to forest fire applications. Meas. Sci. Technol. 2013, 24, 75403. [Google Scholar] [CrossRef]
- Toulouse, T.; Rossi, L.; Celik, T.; Akhloufi, M. Automatic fire pixel detection using image processing: A comparative analysis of rule-based and machine learning-based methods. SIViP 2016, 10, 647–654. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Smith, A.M.S.; Johnston, J.; Freeborn, P.; Amici, S.; Hudak, A.T. Thermal infrared remote sensing: Sensors, methods, applications. In Remote Sensing and Digital Image Processing; Kuenzer, C., Dech, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2013; pp. 347–390. [Google Scholar]
- O’Brien, J.J.; Loudermilk, E.L.; Hornsby, B.; Hudak, A.T.; Bright, B.C.; Dickinson, M.B.; Hiers, J.K.; Teske, C.; Ottmar, R.D. High-resolution infrared thermography for capturing wildland fire behaviour-RxCADRE. Int. J. Wildland Fire 2016, 25, 62–75. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. 2005, 110, D24311. [Google Scholar] [CrossRef]
- Riggan, P.J.; Tissell, R.G. Developments in Environmental Science; Elsevier B.V.: Amsterdam, The Netherlands, 2009; Volume 8. [Google Scholar]
- Paugam, R.; Wooster, M.J.; Roberts, G. Use of handheld thermal imager data for airborne mapping of fire radiative power and energy and flame front rate of spread. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3385–3399. [Google Scholar] [CrossRef]
- Stow, D.A.; Riggan, P.J.; Storey, E.J.; Coulter, L.L. Measuring fire spread rates from repeat pass airborne thermal infrared imagery. Remote Sens. Lett. 2014, 5, 803–812. [Google Scholar] [CrossRef]
- Pastor, E.; Àgueda, A.; Andrade-Cetto, J.; Muñoz, M.; Pérez, Y.; Planas, E. Computing the rate of spread of linear flame fronts by thermal image processing. Fire Saf. J. 2006, 41, 569–579. [Google Scholar] [CrossRef]
- Martìnez-de Dios, J.R.; Merino, L.; Caballero, F.; Ollero, A. Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors 2011, 11, 6328–6353. [Google Scholar] [CrossRef]
- Johnston, J.M.; Wooster, M.J.; Paugam, R.; Wang, X.; Lynham, T.J.; Johnston, L.M. Direct estimation of Byram’s fire intensity from infrared remote sensing imagery. Int. J. Wildland Fire 2017, 26, 668–684. [Google Scholar] [CrossRef]
- Ononye, A.E.; Vodacek, A.; Saber, E. Automated extraction of fire line parameters from multispectral infrared images. Remote Sens. Environ. 2007, 108, 179–188. [Google Scholar] [CrossRef]
- Valero, M.M.; Rios, O.; Mata, C.; Pastor, E.; Planas, E. An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires. Fire Saf. J. 2017, 91, 835–844. [Google Scholar] [CrossRef]
- Valero, M.M.; Rios, O.; Planas, E.; Pastor, E. Automated location of active fire perimeters in aerial infrared imaging using unsupervised edge detectors. Int. J. Wildland Fire 2018, 27, 241–256. [Google Scholar] [CrossRef]
- Stow, D.; Riggan, P.; Schag, G.; Brewer, W.; Tissell, R.; Coen, J.; Storey, E. Assessing uncertainty and demonstrating potential for estimating fire rate of spread at landscape scales based on time sequential airborne thermal infrared imaging. Int. J. Remote Sens. 2019, 40, 4876–4897. [Google Scholar] [CrossRef]
- Schag, G.M.; Stow, D.A.; Riggan, P.J.; Tissell, R.G.; Coen, J.L. Examining landscape-scale fuel and terrain controls of wildfire spread rates using repetitive airborne thermal infrared (ATIR) imagery. Fire 2021, 4, 6. [Google Scholar] [CrossRef]
- Clements, C.B.; Davis, B.; Seto, D.; Contezac, J.; Kochansk, A.; Fillipi, J.-B.; Lareau, N.; Barboni, B.; Butler, B.; Krueger, S.; et al. Fire behavior modeling. In Advances in Forest Fire Research; Vieges, D.X., Ed.; Imprensa da Uniersidade de Coimbra: Coimbra, Portugal, 2013; pp. 392–400. [Google Scholar]
- Dickinson, M.B.; Hudak, A.T.; Zajkowski, T.; Loudermilk, E.L.; Schroeder, W.; Ellison, L.; Kremens, R.L.; Holley, W.; Martinez, O.; Paxton, A.; et al. Measuring radiant emissions from entire prescribed fires with ground, airborne and satellite sensors—RxCADRE 2012. Int. J. Wildland Fire 2016, 25, 48–61. [Google Scholar] [CrossRef]
- Hudak, A.T.; Dickinson, M.B.; Bright, B.C.; Kremens, R.L.; Loudermilk, E.L.; O’Brien, J.J.; Hornsby, B.S.; Ottmar, R.D. Measurements relating fire radiative energy density and surface fuel consumption—RxCADRE 2011 and 2012. Int. J. Wildland Fire 2016, 25, 25–37. [Google Scholar] [CrossRef]
- Carroll, B.J.; Brewer, W.A.; Strobach, E.; Lareau, N.; Brown, S.S.; Valero, M.M.; Kochanski, A.; Clements, C.B.; Kahn, R.; Junghenn Noyes, K.T.; et al. Measuring Coupled Fire–Atmosphere Dynamics: The California Fire Dynamics Experiment (CalFiDE). Bull. Am. Meteorol. Soc. 2024, 105, E690–E708. [Google Scholar] [CrossRef]
- Cal Fire. 2020 Fire Season Incident Archive. 2020. Available online: https://www.fire.ca.gov/incidents/2020/ (accessed on 20 October 2025).
- Cal Fire. Historical Fire Perimeters. 2025. Available online: https://www.fire.ca.gov/what-we-do/fire-resource-assessment-program/fire-perimeters (accessed on 20 October 2025).
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, SMC-9-1, 62–66. [Google Scholar] [CrossRef]
- Huang, D.; Lin, T.; Hu, W. Automatic multilevel thresholding based on two-stage OTSU’s method with cluster determination by valley estimation. Int. J. Innov. Comput. Inf. Control 2011, 7, 5631–5644. [Google Scholar]
- Arora, S.; Acharya, J.; Verma, A.; Panigrahi, P.K. Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit. Lett. 2008, 29, 119–125. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Intell. Mach. Learn. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Bradski, G. The OpenCV Library. 2000. Available online: https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html (accessed on 20 October 2025).
- GDAL/ORG Contributors. GDAL/ORG Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. 2025. Available online: https://zenodo.org/records/17098582 (accessed on 20 October 2025).
- Pratt, W.K. Digital Image Processing; John Wiley & Sons Inc.: New York, NY, USA, 1991. [Google Scholar]
- Baddeley, A. An error metric for binary images. In Robust Computer Vision: Quality of Vision Algorithms; Förstner, W., Ruwiedel, S., Eds.; Wichmann: Karlsruhe, Germany, 1992; pp. 59–78. [Google Scholar]
- Jaccard, P. Distribution de la flore alpine dans le bassin des dranses et dans quelques r’egions voisines. Bull. Soci’et’e Vaudoise Sci. Nat. 1901, 37, 241–272. [Google Scholar]
- Costa, L.D.F. Further generalizations of the Jaccard index. arXiv 2021, arXiv:2110.09619. [Google Scholar] [CrossRef]
- Monedero, S.; Ramirez, J.; Cardil, A. Predicting fire spread and behavior on the fireline. Wildfire Analyst pocket: A mobile app for wildland fire prediction. Ecol. Model. 2019, 392, 103–107. [Google Scholar] [CrossRef]
- Kochanski, A.K.; Mallia, D.V.; Fearon, M.G.; Mandel, J.; Souri, A.H.; Brown, T. Modeling wildfire smoke feedback mechanisms using a coupled fire-atmosphere model with a radiatively active aerosol scheme. J. Geophys. Res. Atmos. 2019, 124, 9099–9116. [Google Scholar] [CrossRef]
- Kochanski, A.K.; Herron-Thorpe, F.; Mallia, D.V.; Mandel, J.; Vaughan, J.K. Integration of a coupled fire-atmosphere model into a regional air quality forecasting system for wildfire events. Front. For. Glob. Change 2021, 4, 728726. [Google Scholar] [CrossRef]










| Flight | Figure of Merit | Baddeley Distance (m) | Inner Normalized Difference | Outer Normalized Difference | Jaccard Index |
|---|---|---|---|---|---|
| Oak 1 | 0.0666 | 24.336 | 0.0020 | 0.1154 | 0.8176 |
| Oak 2 | 0.1195 | 14.322 | 0.0081 | 0.1455 | 0.8659 |
| Oak 3 | 2.113 × 10−8 | 1.675 × 105 | 0.3223 | 0.0377 | 0.7253 |
| Slater | 0.0395 | 78.391 | 0.0615 | 0.0227 | 0.9177 |
| Flight | Figure of Merit | Baddeley Distance (m) | Inner Normalized Difference | Outer Normalized Difference | Jaccard Index |
|---|---|---|---|---|---|
| Oak 1 | 0.0132 | 43.416 | 0.0010 | 0.2231 | 0.7771 |
| Oak 2 | 0.0424 | 26.718 | 0.0015 | 0.2169 | 0.8206 |
| Oak 3 | 0.2486 | 17.484 | 0.1215 | 0.0666 | 0.8237 |
| Slater | 0.0086 | 57.078 | 0.0382 | 0.0346 | 0.9284 |
| Area (m2) | |||
|---|---|---|---|
| Hand Drawn Polygon | Polygonized Polygon | Concave Hull Polygon | |
| Oak 1 | 1,869,620 | 2,276,263 | 2,403,559 |
| Oak 2 | 2,280,438 | 2,593,825 | 2,771,607 |
| Oak 3 | 2,352,536 | 2,103,420 | 2,223,387 |
| Slater | 84,022,008 | 80,756,957 | 84,197,956 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giesige, C.C.; Goldbeck-Dimon, E.; Klofas, A.; Valero, M.M. Semi-Automated Extraction of Active Fire Edges from Tactical Infrared Observations of Wildfires. Remote Sens. 2025, 17, 3525. https://doi.org/10.3390/rs17213525
Giesige CC, Goldbeck-Dimon E, Klofas A, Valero MM. Semi-Automated Extraction of Active Fire Edges from Tactical Infrared Observations of Wildfires. Remote Sensing. 2025; 17(21):3525. https://doi.org/10.3390/rs17213525
Chicago/Turabian StyleGiesige, Christopher C., Eric Goldbeck-Dimon, Andrew Klofas, and Mario Miguel Valero. 2025. "Semi-Automated Extraction of Active Fire Edges from Tactical Infrared Observations of Wildfires" Remote Sensing 17, no. 21: 3525. https://doi.org/10.3390/rs17213525
APA StyleGiesige, C. C., Goldbeck-Dimon, E., Klofas, A., & Valero, M. M. (2025). Semi-Automated Extraction of Active Fire Edges from Tactical Infrared Observations of Wildfires. Remote Sensing, 17(21), 3525. https://doi.org/10.3390/rs17213525

