Recent Active Wildland Fires Related to Rossby Wave Breaking (RWB) in Alaska
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis Methods and Procedures
2.2.1. Active Fire-Period
2.2.2. Synoptic-Scale Fire Weather Conditions
3. Results
3.1. Rossby Wave Breaking (RWB)
- (1)
- Large jet stream meanderings (JSM) resulting in local easterly wind flow at middle-level.
- (2)
- Blocking high-pressure systems such as the rex block, ridge, and Ω at middle-level.
- (3)
- Movement of high-pressure systems at near-surface level.
3.2. Fire Trend
3.2.1. Daily Fire Trends
3.2.2. Classification of Active Fire-Periods
3.2.3. Annual Fire Trends and Standard Deviation
3.3. Weather Conditions Related to RWB
3.3.1. Conditions in the First HS Peak (P1)
3.3.2. Conditions in the Second HS Peak (P2)
4. Discussion
5. Conclusions
- (1)
- The contribution of RWBs to all fires in Alaska is significant, with about half (54.6%) of recent fires in Alaska occurring under RWB-related fire weather conditions.
- (2)
- The frequency of fires related to RWBs was about once every three years (2.86 = 20 years/7 fire-periods) on a simple average calculation.
- (3)
- The average height (atmospheric pressure) values over Alaska of active fire peaks of P1 and P2 at middle-level (500 hPa) were 5757 and 5786 m, respectively. The downward dry and warm flows from high-pressure systems could activate the fires.
- (4)
- The change in wind direction during the RWB-related fires is thought to be one of the factors that contributed to the spread of the fire.
- (5)
- Strong winds blowing day and night from the Beaufort Sea High (BSH) will be the most important factor, as they may intensify the combustion process and favor the fire propagation.
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar] [CrossRef]
- Groisman, P.; Shugart, H.; Kicklighter, D.; Henebry, G.; Tchebakova, N.; Maksyutov, S.; Monier, E.; Gutman, G.; Gulev, S.; Qi, J. Northern Eurasia Future Initiative (NEFI): Facing the challenges and pathways of global change in the twenty-first century. Prog. Earth Planet. Sci. 2017, 4, 41. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Yang, H.; Canadell, J.G.; Chen, Y.; Velde, I.R. Record-high CO2 emissions from boreal fires in 2021. Science 2023, 379, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) sensors. J. Geophys. Res. 2006, 111, G02016. [Google Scholar] [CrossRef]
- NASA Earth Data, Global Fire Maps. Available online: https://firms.modaps.eosdis.nasa.gov/map/#d:24hrs;@0.0,0.0,3.0z (accessed on 4 May 2025).
- Olson, D.L.; Cronan, J.B.; McKenzie, D.; Barnes, J.L.; Camp, A.E. Compiling, Synthesizing and Analyzing Existing Boreal Forest Fire History Data in Alasa, JFSP Research Project Reports, Paper 38. 2011. Available online: http://digitalcommons.unl.edu/jfspresearch/38 (accessed on 30 July 2025).
- Sierra-Hernández, M.R.; Beaudon, E.; Porter, S.E.; Mosley-Thompson, E.; Thompson, L.G. Increased fire activity in Alaska since the 1980s: Evidence from an ice core-derived black carbon record. J. Geophys. Res. Atmos. 2022, 127, e2021JD035668. [Google Scholar] [CrossRef]
- Alaska Fire History Chart with Data from Fire History and Stats, Other AICC Products, Alaska Interagency Coordination Center (AICC). Available online: https://fire.ak.blm.gov/predsvcs/intel.php. (accessed on 29 July 2025).
- Bieniek, P.A.; Waigl, C.F.; Bhatt, U.S.; Ballinger, T.; Lader, R.; Borries-Strigle, C.; Hostler, J.; Fischer, E.; Burgard, M.; Stevens, E.; et al. (submitted). The impact of snowoff timing and associated atmospheric drivers on the Alaska wildfire season. Earth Interact. 2025, 29, e240001. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Verbyla, D.L.; Rupp, T.S.; McGuire, A.D.; Murphy, K.A.; Jandt, R.; Barnes, J.L.; Hoy, E.E.; Duffy, P.A.; Calef, M.; et al. Alaska’s changing fire regime-implications for the vulnerability of its boreal forests. Can. J. For. Res. 2010, 40, 1313–1324. [Google Scholar] [CrossRef]
- Thoman, R.; Walsh, J. Alaska’s Changing Environment: Documenting Alaska’s Physical and Biological Changes Through Observations; McFarland, H., Ed.; International Arctic Research Center, University of Alaska Fairbanks: Fairbanks, AK, USA, 2019. [Google Scholar]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A.; de Groot, W.J.; Johnston, J.; Jurko, N.; Cantin, A.S. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Change 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Hessilt, T.D.; Abatzoglou, J.T.; Chen, Y.; Randerson, J.T.; Scholten, R.C.; van der Werf, G.; Veraverbeke, S. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environ. Res. Lett. 2022, 17, 054008. [Google Scholar] [CrossRef]
- Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010, 19, 253–271. [Google Scholar] [CrossRef]
- Price, C.; Rind, D. The Impact of a 2 × CO2 Climate on Lightning-Caused Fires. J. Clim. 1994, 7, 1484–1494. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Bhatt, U.S.; York, A.; Walsh, J.E.; Lader, R.; Strader, H.; Ziel, R.; Jandt, R.; Thoman, R.L. Lightning Variability in Dynamically Downscaled Simulations of Alaska’s Present and Future Summer Climate. J. Appl. Meteorol. Climatol. 2020, 59, 1139–1152. [Google Scholar] [CrossRef]
- Jain, P.; Barber, Q.E.; Taylor, S.; Whitman, E.; Castellanos-Acuna, D.; Boulanger, Y.; Chavardès, R.D.; Chen, J.; Englefield, P.; Flannigan, M.; et al. Canada Under Fire—Drivers and Impacts of the Record Breaking 2023 Wildfire Season. ESS Open Arch. 2024. [Google Scholar] [CrossRef]
- Henry, D.M. Forecasting Fire Occurrence Using 500 mb Map Correlation; Technical Memorandum NWS AR-21. NWS; NOAA: Anchorage, AK, USA, 1978. [Google Scholar]
- Hess, J.C.; Scott, C.A.; Hufford, G.L.; Fleming, M.D. El Niño and its impact on fire weather conditions in Alaska. Int. J. Wildland Fire 2001, 10, 1–13. [Google Scholar] [CrossRef]
- Fauria, M.; Johnson, E.A. Large-scale climatic patterns control large lightning fire occurrence in Canada and Alaska forest regions. J. Geophys. Res. 2006, 111, G04008. [Google Scholar] [CrossRef]
- Zhao, Z.; Lin, Z.; Li, F.; Rogers, B.M. Influence of atmospheric teleconnections on interannual variability of Arctic-boreal fires. Sci. Total Environ. 2022, 838, 156550. [Google Scholar] [CrossRef]
- Duffy, P.A.; Walsh, J.E.; Graham, J.M.; Mann, D.H.; Rupp, T.S. Impacts of large-scale atmospheric-ocean variability on Alaskan fire season severity. Ecol. Appl. 2005, 15, 1317–1330. [Google Scholar] [CrossRef]
- Ballinger, T.; Lader, R.; Bieniek, P.A.; Strader, H.; Ziel, R.; Bhatt, U.S.; Borries-Strigle, C.; Hostler, J.; Stevens, E.; Waigl, C.F.; et al. Evaluating the Alaska Blocking Index as an indicator of wildfire potential in Alaska’s Central Eastern Interior. Int. J. Climatol. 2024, 44, 2230–2245. [Google Scholar] [CrossRef]
- Eden, J.M.; Krikken, F.; Drobyshev, I. An empirical prediction approach for seasonal fire risk in the boreal forests. Int. J. Climatol. 2020, 40, 2732–2744. [Google Scholar] [CrossRef]
- Justino, F.; Bromwich, D.H.; Schumacher, V.; daSilva, A.; Wang, S.-H. Arctic Oscillation and Pacific-North American pattern dominated-modulation of fire danger and wildfire occurrence. npj Clim. Atmos. Sci. 2022, 5, 52. [Google Scholar] [CrossRef]
- Bell, G. Special Climate Summary, April-July 2004, Hot in Alaska, Cool over Central North America, Wet in South-Central U.S. Available online: http://www.cpc.ncep.noaa.gov/products/expert_assessment/alaska.pdf. (accessed on 14 July 2025).
- Wendler, G.; Conner, J.; Moore, B.; Shulski, M.; Stuefer, M. Climatology of Alaskan wildfires with special emphasis on the extreme year of 2004. Theor. Appl. Climatol. 2011, 104, 459–472. [Google Scholar] [CrossRef]
- Skinner, W.R.; Stocks, B.J.; Martell, D.L.; Bonsal, B.; Shabbar, A. The association between circulation anomalies in the mid-troposphere and area burned by wildland fire in Canada. Theor. Appl. Climatol. 1999, 63, 89–105. [Google Scholar] [CrossRef]
- Skinner, W.; Flannigan, M.; Stocks, B.; Martell, D.L.; Wotton, B.M.; Todd, J.B.; Mason, J.A.; Logan, K.A.; Bosch, E.M. A 500 hPa synoptic wildland fire climatology for large Canadian forest fires, 1959–1996. Theor Appl Clim. 2002, 71, 157–169. [Google Scholar] [CrossRef]
- Lupo, A.; Kininmonth, W. Global Climate Models and Their Limitations. Climate Change Reconsidered II: Physical Science and its Summary for Policymakers, published by The Heartland Institute in September 2013 for the Nongovernmental International Panel on Climate Change (NIPCC). Available online: https://weather.missouri.edu/gcc/_09-09-13_%20Chapter%201%20Models.pdf. (accessed on 14 July 2025).
- Madden, R.A. Observations of large-scale traveling Rossby waves. Rev. Geophys. 1979, 17, 1935–1949. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Ambrizzi, T. Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci. 1993, 50, 1661–1671. [Google Scholar] [CrossRef]
- Hu, Y.; Yue, X. Chenguang Tian, Climatic drivers of the Canadian wildfire episode in 2023. Atmos. Ocean. Sci. Lett. 2024, 17, 100483. Available online: http://www.keaipublishing.com/en/journals/atmospheric-and-oceanic-science-letters/ (accessed on 14 July 2025). [CrossRef]
- Reeder, M.J.; Spengler, T.; Musgrave, R. Rossby waves, extreme fronts, and wildfires in southeastern Australia. Geophys. Res. Lett. 2015, 42, 2015–2023. [Google Scholar] [CrossRef]
- Ali, S.M.; Röthlisberger, M.; Parker, T.; Kornhuber, K.; Martius, O. Recurrent Rossby waves and south-eastern Australian heatwaves. Weather. Clim. Dynam. 2022, 3, 1139–1156. [Google Scholar] [CrossRef]
- Parker, T.; Berry, G.J.; Reeder, M.J. The Structure and Evolution of Heat Waves in Southeastern Australia. J. Clim. 2014, 27, 5768–5785. [Google Scholar] [CrossRef]
- Tamarin-Brodsky, T.; Harnik, N. The relation between Rossby wave-breaking events and low-level weather systems. Weather Clim. Dynam. 2024, 5, 87–108. [Google Scholar] [CrossRef]
- Riviere, G. Role of Rossby wave breaking in the west Pacific teleconnection. Geophys. Res. Lett. 2010, 37, 1802. [Google Scholar] [CrossRef]
- Antokhina, O.Y.; Antokhin, P.N.; Belan, B.D.; Gochakov, A.V.; Martynova, Y.V.; Pustovalov, K.N.; Tarabukina, L.D.; Devyatova, E.V. Effects of Rossby Waves Breaking and Atmospheric Blocking Formation on the Extreme Forest Fire and Floods in Eastern Siberia 2019. Fire 2023, 6, 122. [Google Scholar] [CrossRef]
- Russella, E.N.; Loikitha, P.C.; Ajibadeb, I.; Donec, J.M.; Lower, C. The meteorology and impacts of the September 2020 Western United States extreme weather event. Weather Clim. Extrem. 2024, 43, 100647. [Google Scholar] [CrossRef]
- Fire Weather. Available online: https://learnline.cdu.edu.au/units/env207/fundamentals/weather.html (accessed on 14 July 2025).
- Hayasaka, H.; Tanaka, H.; Bieniek, P. Synoptic-scale fire weather conditions in Alaska. Polar Sci. 2016, 10, 217–226. [Google Scholar] [CrossRef]
- Hayasaka, H. Forest Fires and Wind Flow. J. JSEM (Jpn. J. Jpn. Soc. Exp. Mech.) 2014, 14, 155–160. [Google Scholar]
- Stegall, S.T.; Zhang, J. Field Climatology, Changes, and Extremes in the Chukchi–Beaufort Seas and Alaska North Slope during 1979–2009. J. Clim. 2012, 25, 8075–8089. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P. Characteristics of the Beaufort Sea High. J. Clim. 2011, 24, 159–182. [Google Scholar] [CrossRef]
- FIRMS; MODIS Collection 6. Available online: https://firms.modaps.eosdis.nasa.gov/download/ (accessed on 11 February 2025).
- MERRA-2, Modern-Era Retrospective Analysis for Research and Applications, Version 2. Available online: https://fluid.nccs.nasa.gov/reanalysis/classic_merra2/?field=wind&level=850®ion=alaska&one_click=1&tau=12&track=none&fcst=20040617 (accessed on 25 December 2024).
- NCEP/NCAR 40-Year Re-analysis Data. Available online: https://psl.noaa.gov/data/composites/hour/ (accessed on 21 April 2025).
- WORLDVIEW. Available online: https://worldview.earthdata.nasa.gov (accessed on 18 April 2024).
- Tanaka, H.L.; Watarai, Y.; Kanda, T. Energy spectrum proportional to the squared phase speed of Rossby modes in the general circulation of the atmosphere. Geophys. Res. Lett. 2004, 31, 13109. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration, Basic Wave Patterns. Available online: https://www.noaa.gov/jetstream/upper-air-charts/basic-wave-patterns (accessed on 11 July 2025).
- Hayasaka, H.; Yamazaki, K.; Naito, D. Weather Conditions and Warm Air Masses in Southern Sakha During Active Forest Fire Periods. J. Disaster Res. 2019, 14, 641–648. [Google Scholar] [CrossRef]
Fire-Period (Rank, Date of HSs Max. Peak) | Max. HS During the Period. | Total num. of HSs Fire-Periods | Num. of Fire Days & Period | Name of HS Peak | Number of HSs | Height over Central Alaska at 500 hPa, m | Wind Direction on P1,P2 | Temp. at 925 hPa, °K | Type of Blocking | Beaufort Sea High |
---|---|---|---|---|---|---|---|---|---|---|
(1) 14 Aug.2005 | 5490 | 38,274 | 14(Aug.8–21) | (1)P1 | 3778 | 5880 | S, W | 294 | Rex | |
(1)P2 | 5490 | 5780 | E | 294 | Rex | ○ | ||||
(2) 29 Jun.2004 | 4913 | 27,182 | 17(Jun.18–Jul.4) | (2)P1 | 2014 | 5760 | S | 293 | Ridge | |
(2)P2 | 4913 | 5830 | E | 293 | Ω | ○ | ||||
(3) 25 Jun.2015 | 4337 | 28,125 | 25(Jun.19–Jul.13) | (3)P1 | 4337 | 5610 | SW, S | 288 | Ridge | |
(3)P2 | 3120 | 5790 | E | 293 | Ridge | ○ | ||||
(4) 20 Aug.2004 | 3279 | 28,887 | 24(Aug.6–29) | (4)P1 | 1463 | 5820 | SW | 291 | Ridge | |
(4)P2 | 3279 | 5760 | E | 294 | Ω-Rex | ○ | ||||
(5) 4 Aug.2009 | 3164 | 17,422 | 19(Jul.18–Aug.5) | (5)P1 | 1779 | 5780 | SE | 293 | Ridge | |
(5)P2 | 3164 | 5760 | E | 293 | Ridge | ○ | ||||
(6) 8 Jul.2019 | 2621 | 15,922 | 17(Jun.26–Jul.12) | (6)P1 | 1028 | 5820 | W* | 293 | Rex | |
(6)P2 | 2621 | 5820 | E, NE | 294 | Rex | ○ | ||||
(7) 23 Jul.2019 | 1356 | 8610 | 12(Jul.14–25) | (7)P1 | 983 | 5630 | W | 289 | Ridge | |
(7)P2 | 1356 | 5760 | E | 291 | Rex | ○ |
Fire-Period (Rank, Date of HSs Max. Peak) | Max. HS During the Period | Total Num. of HSs Fire-Periods | Num. of Fire Days & Period | Height over Central Alaska at 500 hPa, m | Wind Direction Changes During Fire-Period | Temp. at 925 hPa, °K |
---|---|---|---|---|---|---|
(8) 30 Jun.2022 | 2413 | 14,388 | 18(Jun.24–Jul.11) | 5730 | W to E | 288 |
(9) 27 Jul.2005 | 1944 | 8911 | 10(Jul.22–31) | 5640 | E to NW | 288 |
(10) 10 Jun.2022 | 1591 | 6317 | 6(Jun.7–12) | 5730 | NE to SW | 287 |
(11) 28 Jun.2005 | 1549 | 5625 | 5(Jun.26–30) | 5640 | E to W | 291 |
(12) 13 Jul.2009 | 1206 | 2653 | 4(Jul.10–13) | 5780 | SW to E | 291 |
(13) 12 Jul.2004 | 4227 | 15,853 | 11(Jul.10–20) | 5640 | W, S | 293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayasaka, H. Recent Active Wildland Fires Related to Rossby Wave Breaking (RWB) in Alaska. Remote Sens. 2025, 17, 2719. https://doi.org/10.3390/rs17152719
Hayasaka H. Recent Active Wildland Fires Related to Rossby Wave Breaking (RWB) in Alaska. Remote Sensing. 2025; 17(15):2719. https://doi.org/10.3390/rs17152719
Chicago/Turabian StyleHayasaka, Hiroshi. 2025. "Recent Active Wildland Fires Related to Rossby Wave Breaking (RWB) in Alaska" Remote Sensing 17, no. 15: 2719. https://doi.org/10.3390/rs17152719
APA StyleHayasaka, H. (2025). Recent Active Wildland Fires Related to Rossby Wave Breaking (RWB) in Alaska. Remote Sensing, 17(15), 2719. https://doi.org/10.3390/rs17152719