The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Himawari-8/9 Satellites and Advanced Himawari Imager
2.2. Front Mapping
2.3. Front Strength and Cross-Frontal Ranges of Oceanic Variables
2.4. Downstream Tracking of CCF
3. Results
3.1. Introduction
3.2. Sea Surface Temperature
3.2.1. Winter
3.2.2. Summer
3.3. SST Gradient Magnitude GM
3.4. Statistics of SST Fronts: Frontal Frequency Maps
3.5. Cross-Frontal Distributions of SST along Fixed Lines across the Northern SCS
3.6. Analysis of SST Distributions along 11 Fixed Lines across the Northern SCS
4. Discussion
4.1. China Coastal Front as a Major Link between the ECS and SCS
4.2. China Coastal Front as a Chain of Regional Coastal Fronts
4.3. China Coastal Front in the Northern SCS in Summer
4.4. Guangdong Coastal Current and China Coastal Front
4.5. Westernmost Extension of the China Coastal Current
4.6. East Hainan Fronts
4.7. Fujian and Guangdong Coastal Upwelling Fronts
4.8. Taiwan Bank Fronts
4.9. Pearl River Plume Front
4.10. Intensity and Strength of the China Coastal Front
4.11. Comparison of Cross-Frontal SST Gradients (Figure 2 and Figure 3) with Published Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, J.L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont. Shelf Res. 2004, 24, 1745–1760. [Google Scholar] [CrossRef]
- Shu, Y.Q.; Wang, Q.; Zu, T.T. Progress on shelf and slope circulation in the northern South China Sea. Sci. China 2018, 61, 560–571. [Google Scholar] [CrossRef]
- Belkin, I.M.; Lou, S.S.; Yin, W.B. The China Coastal Front from Himawari-8 AHI SST Data—Part 1: East China Sea. Remote Sens. 2023, 15, 2123. [Google Scholar] [CrossRef]
- Shen, X.T.; Belkin, I.M. Observational studies of ocean fronts: A systematic review of Chinese-language literature. Water 2023, 15, 3649. [Google Scholar] [CrossRef]
- Belkin, I.M.; O’Reilly, J.E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 2009, 78, 317–326. [Google Scholar] [CrossRef]
- Cayula, J.F.; Cornillon, P. Edge detection algorithm for SST images. J. Atmos. Ocean. Technol. 1992, 9, 67–80. [Google Scholar] [CrossRef]
- Castelao, R.M.; Wang, Y.T. Wind-driven variability in sea surface temperature front distribution in the California Current System. J. Geophys. Res. Ocean. 2014, 119, 1861–1875. [Google Scholar] [CrossRef]
- Pi, Q.L.; Hu, J.Y. Analysis of sea surface temperature fronts in the Taiwan Strait and its adjacent area using an advanced edge detection method. Sci. China Earth Sci. 2010, 53, 1008–1016. [Google Scholar] [CrossRef]
- Shimada, T.; Sakaida, F.; Kawamura, H.; Okumura, T. Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. Remote Sens. Environ. 2005, 98, 21–34. [Google Scholar] [CrossRef]
- Wang, Y.T.; Yu, Y.; Zhang, Y.; Zhang, H.R.; Chai, F. Distribution and variability of sea surface temperature fronts in the South China Sea. Estuar. Coast. Shelf Sci. 2020, 240, 106793. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Castelao, R.M.; Yuan, Y.P. Seasonal variability of alongshore winds and sea surface temperature fronts in Eastern Boundary Current Systems. J. Geophys. Res. Ocean. 2015, 120, 2385–2400. [Google Scholar] [CrossRef]
- Xing, Q.W.; Yu, H.Q.; Wang, H.; Ito, S.I. An improved algorithm for detecting mesoscale ocean fronts from satellite observations: Detailed mapping of persistent fronts around the China Seas and their long-term trends. Remote Sens. Environ. 2023, 294, 113627. [Google Scholar] [CrossRef]
- Belkin, I.M.; Cornillon, P.C. SST fronts of the Pacific coastal and marginal seas. Pac. Oceanogr. 2003, 1, 90–113. [Google Scholar]
- Belkin, I.M.; Cornillon, P.C. Fronts in the World Ocean’s Large Marine Ecosystems. ICES CM 2007, 500, 21. [Google Scholar]
- Belkin, I.M.; Cornillon, P.C.; Sherman, K. Fronts in Large Marine Ecosystems. Prog. Oceanogr. 2009, 81, 223–236. [Google Scholar] [CrossRef]
- Chang, Y.; Shimada, T.; Lee, M.A.; Lu, H.J.; Sakaida, F.; Kawamura, H. Wintertime sea surface temperature fronts in the Taiwan Strait. Geophys. Res. Lett. 2006, 33, L23603. [Google Scholar] [CrossRef]
- Chang, Y.; Lee, M.A.; Shimada, T.; Sakaida, F.; Kawamura, H.; Chan, J.W.; Lu, H.J. Wintertime high-resolution features of sea surface temperature and chlorophyll-a fields associated with oceanic fronts in the southern East China Sea. Int. J. Remote Sens. 2008, 29, 6249–6261. [Google Scholar] [CrossRef]
- Chang, Y.; Shieh, W.J.; Lee, M.A.; Chan, J.W.; Lan, K.W.; Weng, J.S. Fine-scale sea surface temperature fronts in wintertime in the northern South China Sea. Int. J. Remote Sens. 2010, 31, 4807–4818. [Google Scholar] [CrossRef]
- Chen, J.Y.; Hu, Z.F. Seasonal variability in spatial patterns of sea surface cold- and warm fronts over the continental shelf of the northern South China Sea. Front. Mar. Sci. 2023, 9, 1100772. [Google Scholar] [CrossRef]
- Dong, J.; Zhong, Y. Submesoscale fronts observed by satellites over the Northern South China Sea shelf. Dyn. Atmos. Ocean. 2020, 91, 101161. [Google Scholar] [CrossRef]
- Jing, Z.Y.; Qi, Y.Q.; Du, Y.; Zhang, S.W.; Xie, L.L. Summer upwelling and thermal fronts in the northwestern South China Sea: Observational analysis of two mesoscale mapping surveys. J. Geophys. Res. Ocean. 2015, 120, 1993–2006. [Google Scholar] [CrossRef]
- Jing, Z.Y.; Qi, Y.Q.; Fox-Kemper, B.; Du, Y.; Lian, S.M. Seasonal thermal fronts on the northern South China Sea shelf: Satellite measurements and three repeated field surveys. J. Geophys. Res. Ocean. 2016, 121, 1914–1930. [Google Scholar] [CrossRef]
- Lan, K.W.; Kawamura, H.; Lee, M.A.; Chang, Y.; Chan, J.W.; Liao, C.H. Summertime sea surface temperature fronts associated with upwelling around the Taiwan Bank. Cont. Shelf Res. 2009, 29, 903–910. [Google Scholar] [CrossRef]
- Lee, M.A.; Chang, Y.; Shimada, T. Seasonal evolution of fine-scale sea surface temperature fronts in the East China Sea. Deep-Sea Res. Part II 2015, 119, 20–29. [Google Scholar] [CrossRef]
- Ping, B.; Su, F.Z.; Meng, Y.S.; Du, Y.Y.; Fang, S.H. Application of a sea surface temperature front composite algorithm in the Bohai, Yellow, and East China Seas. Chin. J. Oceanol. Limnol. 2016, 34, 597–607. [Google Scholar] [CrossRef]
- Ren, S.H.; Zhu, X.M.; Drevillon, A.; Wang, H.; Zhang, Y.F.; Zu, Z.Q.; Li, A. Detection of SST fronts from a high-resolution model and its preliminary results in the South China Sea. J. Atmos. Ocean. Technol. 2021, 38, 387–403. [Google Scholar] [CrossRef]
- Shi, R.; Guo, X.Y.; Wang, D.X.; Zeng, L.L.; Chen, J. Seasonal variability in coastal fronts and its influence on sea surface wind in the Northern South China Sea. Deep-Sea Res. Part II 2015, 119, 30–39. [Google Scholar] [CrossRef]
- Wang, D.X.; Liu, Y.; Qi, Y.Q.; Shi, P. Seasonal variability of thermal fronts in the Northern South China Sea from satellite data. Geophys. Res. Lett. 2001, 28, 3963–3966. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chen, W.Y.; Chang, Y.; Lee, M.A. Ichthyoplankton community associated with oceanic fronts in early winter on the continental shelf of the southern East China Sea. J. Mar. Sci. Technol. 2013, 21, 65–76. [Google Scholar] [CrossRef]
- Wang, Y.C.; Chan, J.W.; Lan, Y.C.; Yang, W.C.; Lee, M.A. Satellite observation of the winter variation of sea surface temperature fronts in relation to the spatial distribution of ichthyoplankton in the continental shelf of the southern East China Sea. Int. J. Remote Sens. 2018, 39, 4550–4564. [Google Scholar] [CrossRef]
- Yang, C.Y.; Ye, H.B. The features of the coastal fronts in the Eastern Guangdong coastal waters during the downwelling-favorable wind period. Sci. Rep. 2021, 11, 10238. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, H.R.; Jin, J.B.; Wang, Y.T. Trends of sea surface temperature and sea surface temperature fronts in the South China Sea during 2003–2017. Acta Oceanol. Sin. 2019, 38, 106–115. [Google Scholar] [CrossRef]
- Zeng, X.Z.; Belkin, I.M.; Peng, S.Q.; Li, Y.N. East Hainan upwelling fronts detected by remote sensing and modelled in summer. Int. J. Remote Sens. 2014, 35, 4441–4451. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, J. Dynamic characteristics of a submesoscale front and associated heat fluxes over the northeastern South China Sea shelf. Atmos. Ocean. 2021, 59, 190–200. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, L.L.; Wang, Q.; Geng, B.X.; Liu, C.J.; Shi, R.; Liu, N.; Wang, W.P.; Wang, D.X. Seasonal variation in the three-dimensional structures of coastal thermal front off western Guangdong. Acta Oceanol. Sin. 2021, 40, 88–99. [Google Scholar] [CrossRef]
- Zhao, L.H.; Yang, D.T.; Zhong, R.; Yin, X.Q. Interannual, seasonal, and monthly variability of sea surface temperature fronts in offshore China from 1982–2021. Remote Sens. 2022, 14, 5336. [Google Scholar] [CrossRef]
- Cayula, J.F.; Cornillon, P. Multi-image edge detection for SST images. J. Atmos. Ocean. Technol. 1995, 12, 821–829. [Google Scholar] [CrossRef]
- Hickox, R.; Belkin, I.; Cornillon, P.; Shan, Z. Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai Seas from satellite SST data. Geophys. Res. Lett. 2000, 27, 2945–2948. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Fagherazzi, S.; Liu, X.H.; Shao, D.D.; Miao, C.Y.; Cai, Y.Z.; Hou, C.Y.; Liu, Y.L.; Li Xia Cui, B.S. Long-term variations in water discharge and sediment load of the Pearl River Estuary: Implications for sustainable development of the Greater Bay Area. Front. Mar. Sci. 2022, 9, 983517. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, L.; Chen, C.T.A.; Guo, X.G.; Jing, C.S. Currents in the Taiwan Strait as observed by surface drifters. J. Oceanogr. 2011, 67, 395–404. [Google Scholar] [CrossRef]
- Huang, T.H.; Chen, C.T.A.; Bai, Y.; He, X.Q. Elevated primary productivity triggered by mixing in the quasi-cul-de-sac Taiwan Strait during the NE monsoon. Sci. Rep. 2020, 10, 7846. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Guo, X.Y.; Chen, J.; Zeng, L.L.; Wu, B.; Wang, D.X. Effects of spatial scale modification on the responses of surface wind stress to the thermal front in the northern South China Sea. J. Clim. 2022, 35, 179–194. [Google Scholar] [CrossRef]
- Dong, L.X.; Su, J.L.; Wong, L.A.; Cao, Z.Y.; Chen, J.C. Seasonal variation and dynamics of the Pearl River plume. Cont. Shelf Res. 2004, 24, 1761–1777. [Google Scholar] [CrossRef]
- Zu, T.T.; Gan, J.P. A numerical study of coupled estuary–shelf circulation around the Pearl River Estuary during summer: Responses to variable winds, tides and river discharge. Deep.-Sea Res. Part II 2015, 117, 53–64. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Satellite-derived sea surface temperature fronts on the continental shelf off the northeast U.S. coast. J. Geophys. Res. Ocean. 1999, 104, 23459–23478. [Google Scholar] [CrossRef]
- Ullman, D.S.; Cornillon, P.C. Continental shelf surface thermal fronts in winter off the northeast US coast. Cont. Shelf Res. 2001, 21, 1139–1156. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Shi, M.C.; Chen, C.S.; Xu, Q.C.; Lin, H.C.; Liu, G.M.; Wang, H.; Wang, F.; Yan, J.H. The role of Qiongzhou Strait in the seasonal variation of the South China Sea circulation. J. Phys. Oceanogr. 2002, 32, 103–121. [Google Scholar] [CrossRef]
- Lao, Q.B.; Zhang, S.W.; Li, Z.Y.; Chen, F.J.; Zhou, X.; Jin, G.Z.; Huang, P.; Deng, Z.Y.; Chen, C.Q.; Zhu, Q.M.; et al. Quantification of the seasonal intrusion of water masses and their impact on nutrients in the Beibu Gulf using dual water isotopes. J. Geophys. Res. Ocean. 2022, 127, e2021JC018065. [Google Scholar] [CrossRef]
- Li, J.Y.; Li, M.; Wang, C.; Zheng, Q.A.; Xu, Y.; Zhang, T.Y.; Xie, L.L. Multiple mechanisms for chlorophyll a concentration variations in coastal upwelling regions: A case study east of Hainan Island in the South China Sea. Ocean Sci. 2023, 19, 469–484. [Google Scholar] [CrossRef]
- Tan, K.Y.; Xie, L.L.; Li, M.M.; Li, M.; Li, J.Y. 3D structure and seasonal variation of temperature fronts in the shelf sea west of Guangdong. Haiyang Xuebao 2023, 45, 42–55. [Google Scholar] [CrossRef]
- Zhi, H.H.; Wu, H.; Wu, J.X.; Zhang, W.X.; Wang, Y.H. River plume rooted on the sea-floor: Seasonal and spring-neap variability of the Pearl River plume front. Front. Mar. Sci. 2022, 9, 791948. [Google Scholar] [CrossRef]
- Lin, H.Y.; Sun, Z.Y.; Chen, Z.Z.; Zhu, J.; Hu, J.Y. Wintertime Guangdong coastal currents successfully captured by cheap GPS drifters. Acta Oceanol. Sin. 2020, 39, 166–170. [Google Scholar] [CrossRef]
- Yang, L.Q.; Huang, Z.D.; Sun, Z.Y.; Hu, J.Y. Surface currents along the coast of the Chinese Mainland observed by coastal drifters in autumn and winter. Mar. Technol. Soc. J. 2021, 55, 161–169. [Google Scholar] [CrossRef]
- Yang, L.Q.; Sun, Z.Y.; Hu, Z.Y.; Huang, Z.D.; Chen, Z.Z.; Zhu, J.; Hu, J.Y. Surface currents along the coast of the Chinese Mainland observed by coastal drifters during April–May 2019. Mar. Technol. Soc. J. 2023, 57, 156–167. [Google Scholar] [CrossRef]
- Lin, P.G.; Cheng, P.; Gan, J.P.; Hu, J.Y. Dynamics of wind-driven upwelling off the northeastern coast of Hainan Island. J. Geophys. Res. Ocean. 2016, 121, 1160–1173. [Google Scholar] [CrossRef]
- Li, Y.N.; Curchitser, E.N.; Wang, J.; Peng, S.Q. Tidal effects on the surface water cooling northeast of Hainan Island, South China Sea. J. Geophys. Res. Ocean. 2020, 125, e2019JC016016. [Google Scholar] [CrossRef]
- Bai, P.; Yang, J.L.; Xie, L.L.; Zhang, S.W.; Ling, Z. Effect of topography on the cold water region in the east entrance area of Qiongzhou Strait. Estuar. Coast. Shelf Sci. 2020, 242, 106820. [Google Scholar] [CrossRef]
- Shi, W.A.; Huang, Z.; Hu, J.Y. Using TPI to map spatial and temporal variations of significant coastal upwelling in the northern South China Sea. Remote Sens. 2021, 13, 1065. [Google Scholar] [CrossRef]
- Hu, J.Y.; Wang, X.H. Progress on upwelling studies in the China seas. Rev. Geophys. 2016, 54, 653–673. [Google Scholar] [CrossRef]
- Hu, J.Y.; San Liang, X.; Lin, H.Y. Coastal upwelling off the China coasts. In Coastal Environment, Disaster, and Infrastructure: A Case Study of China’s Coastline; Liang, X.L., Zhang, Y., Eds.; IntechOpen: London, UK, 2018; pp. 3–25. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.F.; Hu, J.Y.; Sun, Z.Y.; Zhu, J.; Chen, Z.Z. Summertime sea surface temperature and salinity fronts in the southern Taiwan Strait. Int. J. Remote Sens. 2014, 35, 4452–4466. [Google Scholar] [CrossRef]
- Ou, S.Y.; Zhang, H.; Wang, D.X. Dynamics of the buoyant plume off the Pearl River Estuary in summer. Environ. Fluid Mech. 2009, 9, 471–492. [Google Scholar] [CrossRef]
- Zu, T.T.; Wang, D.X.; Gan, J.P.; Guan, W.B. On the role of wind and tide in generating variability of Pearl River plume during summer in a coupled wide estuary and shelf system. J. Mar. Syst. 2014, 136, 65–79. [Google Scholar] [CrossRef]
- Hu, Z.F.; Xie, G.H.; Zhao, J.; Lei, Y.P.; Xie, J.C.; Pang, W.H. Mapping diurnal variability of the wintertime Pearl River plume front from Himawari-8 geostationary satellite observations. Water 2022, 14, 43. [Google Scholar] [CrossRef]
- Zhang, S.R.; Lu, X.X.; Higgitt, D.L.; Chen, C.T.A.; Han, J.T.; Sun, H.G. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) basin, China. Glob. Planet. Chang. 2008, 60, 365–380. [Google Scholar] [CrossRef]
- Shi, R.; Chen, J.; Guo, X.Y.; Zeng, L.L.; Li, J.; Xie, Q.; Wang, X.; Wang, D.X. Ship observations and numerical simulation of the marine atmospheric boundary layer over the spring oceanic front in the northwestern South China Sea. J. Geophys. Res. Atmos. 2017, 122, 3733–3753. [Google Scholar] [CrossRef]
Reference | Sensor | Period | Algorithm | Region |
---|---|---|---|---|
Belkin and Cornillon 2003 [14] | AVHRR | 1985–1996 | CCA1992 | SCS |
Belkin and Cornillon 2007 [15] | AVHRR | 1985–1996 | CCA1992 | SCS |
Belkin et al., 2009 [16] | AVHRR | 1985–1996 | CCA1992 | SCS |
Belkin et al., 2024 (this study) | AHI | 2015–2021 | BOA2009 | NSCS, including TS |
Chang et al., 2006 [17] | AVHRR | 1996–2005 | S2005 | TS |
Chang et al., 2008 [18] | AVHRR | 1996–2005 | S2005 | TS (north of 24°N) |
Chang et al., 2010 [19] | AVHRR | 2001–2007 | S2005 | NSCS, including TS |
Chen JY and Hu ZF 2023 [20] | GHRSST | 2002–2021 | S2005 | NSCS |
Dong and Zhong 2020 [21] | AVHRR MODIS | 2009–2012 | GM | NSCS, including TS |
Jing et al., 2015 [22] | OSTIA | 2006–2013 | GM | NSCS |
Jing et al., 2016 [23] | GHRSST | 2006–2014 | GM | NSCS |
Lan et al., 2009 [24] | AVHRR | 1996–2005 | S2005 | TS |
Lee et al., 2015 [25] | AVHRR | 1996–2009 | S2005 | TS (north of 24°N) |
Pi and Hu 2010 [8] | Misc. * | 2002–2008 | PH2010 | NSCS, including TS |
Ping et al., 2016 [26] | MODIS | 2000–2013 | CCA1992 | TS (north of 22°N) |
Ren et al., 2021 [27] | Model | 2005–2018 | Canny (1986) | SCS |
Shi R et al., 2015 [28] | OSTIA | 2006–2011 | GM | NSCS |
Wang DX et al., 2001 [29] | AVHRR | 1991–1998 | GM | NSCS, including TS |
Wang YC et al., 2013 [30] | AVHRR | 2006–2009 | S2005 | TS |
Wang YC et al., 2018 [31] | AVHRR | 2005–2015 | S2005 | TS (north of 24°N) |
Wang YT et al., 2020 [10] | MODIS | 2002–2017 | W2020 | NSCS, including TS |
Xing QW et al., 2023 [13] | AVHRR | 1982–2021 | CCAIM | China Seas |
Yang CY and Ye HB 2021 [32] | MODIS | 2003–2017 | NA | NSCS (114–117°E) |
Yu et al., 2019 [33] | MODIS | 2002–2017 | GM | SCS |
Zeng et al., 2014 [34] | MODIS | 2002–2011 | BOA2009 | East Hainan |
Zhang L and Dong J 2021 [35] | MODIS | 2016–2017 | GM | NSCS, 250 m L2 data |
Zhang Y et al., 2021 [36] | OSTIA | 2006–2015 | GM | NSCS, 3D structure |
Zhao et al., 2022 [37] | DOISST | 1982–2021 | CCA1992 | China Seas |
Line No. | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 1 | 2 |
---|---|---|---|---|---|---|---|---|---|---|---|
Lon/Lat | 19N | 20N | 21N | 112E | 113E | 114E | 115E | 116E | 117E | 23N | 118E |
November | 26.5–26.7 * | 25.9–26.4 | 25.1–26.0 | 24.0–26.0 | 24.2–26.0 | 24.5–25.8 | 23.8–25.5 | 23.2–25.8 | 22.8–27.0 | 23.6–26.7 | 22.4–27.2 |
December | 24.0–25.0 | 22.6–24.7 | 21.2–23.5 * | 20.3–25.3 * | 19.6–25.5 * | 20.6–25.7 * | 20.1–22.9 * | 19.7–23.7 | 20.2–24.3 | 20.1–24.7 | 18.2–25.1 |
January | 22.3–23.8 * | 20.4–22.9 | 19.0–22.0 * | 18.5–24.0 * | 18.3–24.2 * | 18.3–24.2 * | 17.7–21.4 ! | 17.2–23.0 ! | 16.5–24.2 * | 17.7–23.3 ! | 15.7–24.3 ! |
February | 22.0–23.7 | 20.2–22.8 * | 19.0–22.2 * | 18.7–23.7 * | 18.4–23.8 * | 18.2–24.0 * | 17.5–21.5 | 16.8–22.7 * | 16.2–23.7 | 17.5–23.6 | 15.3–24.3 |
March | 23.5–24.5 | 22.0–24.2 | 21.0–23.6 * | 20.5–24.5 * | 20.3–24.9 * | 19.9–25.3 * | 19.6–22.3 | 18.5–23.4 * | 18.2–23.8 | 20.2–24.5 | 17.0–24.6 |
April | 25.4–26.4 * | 24.5–26.0 | 24.1–25.3 * | 23.6–26.6 * | 23.7–26.7 * | 23.1–26.7 * | 23.0–26.7 * | 22.3–27.0 | 21.8–27.1 * | 23.9 *–25.8 | 20.4–25.7 |
Line | November | December | January | February | March | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 (20°N) | 25.9–26.4 | 22.6–24.5 | 20.4–22.8 | 20.2–22.7 | 22.0–24.0 | 24.5–26.0 | 27.3–28.8 | 28.4–29.9 | 28.2–30.2 | 28.7–30.2 | 29.0–29.7 | 27.9–27.9 |
11 (19°N) | 26.5–26.6 | 24.0–25.0 | 22.3–23.8 | 22.0–23.7 | 23.5–24.5 | 25.5–26.3 | 27.5–29.2 | 27.6–30.0 | 27.8–30.2 | 28.5–30.0 | 29.4–29.7 | 28.0–28.1 |
Line | May | June | July | August | September |
---|---|---|---|---|---|
1 (23°N) | 26.1–25.5–28.3 | 28.3–26.6–29.8 | 29.1–27.1–30.3 | 29.2–27.0–30.1 | 28.5–27.4–29.5 |
2 (118°E) | No upwelling | 27.3–26.5–29.5 | 27.7–26.5–30.0 | 28.0–27.0–29.8 | 28.2–27.5–29.5 |
Line | November | December | January | February | March | April |
---|---|---|---|---|---|---|
1 (23°N) | 23.1–23.6 | 19.4–20.0 | 17.0–17.8 | 16.5–17.4 | 18.7–20.5 | 22.0–23.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belkin, I.M.; Lou, S.-S.; Zang, Y.-T.; Yin, W.-B. The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea. Remote Sens. 2024, 16, 3415. https://doi.org/10.3390/rs16183415
Belkin IM, Lou S-S, Zang Y-T, Yin W-B. The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea. Remote Sensing. 2024; 16(18):3415. https://doi.org/10.3390/rs16183415
Chicago/Turabian StyleBelkin, Igor M., Shang-Shang Lou, Yi-Tao Zang, and Wen-Bin Yin. 2024. "The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea" Remote Sensing 16, no. 18: 3415. https://doi.org/10.3390/rs16183415
APA StyleBelkin, I. M., Lou, S. -S., Zang, Y. -T., & Yin, W. -B. (2024). The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea. Remote Sensing, 16(18), 3415. https://doi.org/10.3390/rs16183415