Evaluating Satellite-Based Water Quality Sensing of Inland Waters on Basis of 100+ German Water Bodies Using 2 Different Processing Chains
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Data
2.2. Chemical and Physical Properties: Chlorophyll, Secchi Depth, and Turbidity
2.3. Remote Sensing Data Processing and Extraction
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Atmospheric Correction, Retrieval of Water Constituents, and Contrasting Approaches in Signal Processing
4.2. Prerequisites for Validation
4.3. Comparisons between In Situ and Satellite Data
4.4. Limitations in the In Situ Data Which Become Apparent When Comparing Them to Remote Sensing Data
4.5. Improving the Fit between In Situ and Satellite Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alikas, K.; Kangro, K.; Kõks, K.-L.; Tamm, M.; Freiberg, R.; Laas, A. Consistency of Six in situ, in Vitro and Satellite-Based Methods to Derive Chlorophyll a in Two Optically Different Lakes. Front. Environ. Sci. 2023, 10, 989671. [Google Scholar] [CrossRef]
- Attila, J.; Koponen, S.; Kallio, K.; Lindfors, A.; Kaitala, S.; Ylöstalo, P. MERIS Case II Water Processor Comparison on Coastal Sites of the Northern Baltic Sea. Remote Sens. Environ. 2013, 128, 138–149. [Google Scholar] [CrossRef]
- Dekker, A.G.; Malthus, T.J.; Wijnen, M.M.; Seyhan, E. Remote Sensing as a Tool for Assessing Water Quality in Loosdrecht Lakes. Hydrobiologia 1992, 233, 137–159. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Klinger, P.; Heege, T.; Oppelt, N. Multi-Sensor Satellite and In situ Monitoring of Phytoplankton Development in a Eutrophic-Mesotrophic Lake. Sci. Total Environ. 2018, 612, 1200–1214. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote Sensing for Lake Research and Monitoring—Recent Advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Gurlin, D.; Gitelson, A.A.; Moses, W.J. Remote Estimation of Chl-a Concentration in Turbid Productive Waters—Return to a Simple Two-Band NIR-Red Model? Remote Sens. Environ. 2011, 115, 3479–3490. [Google Scholar] [CrossRef]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote Sensing of Black Lakes and Using 810 Nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Schütt, E.M.; Hieronymi, M.; Dare, J.; Krasemann, H. Analysis of Recurring Patchiness in Satellite-Derived Chlorophyll a to Aid the Selection of Representative Sites for Lake Water Quality Monitoring. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102547. [Google Scholar] [CrossRef]
- Oppelt, N.; Schulze, F.; Bartsch, I.; Doernhoefer, K.; Eisenhardt, I. Hyperspectral Classification Approaches for Intertidal Macroalgae Habitat Mapping: A Case Study in Heligoland. Opt. Eng. 2012, 51, 111703. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Alikas, K.; Anstee, J.; Barbosa, C.; Binding, C.; Bresciani, M.; Cremella, B.; Giardino, C.; Gurlin, D.; et al. Simultaneous Retrieval of Selected Optical Water Quality Indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens. Environ. 2022, 270, 112860. [Google Scholar] [CrossRef]
- Werther, M.; Odermatt, D.; Simis, S.G.H.; Gurlin, D.; Jorge, D.S.F.; Loisel, H.; Hunter, P.D.; Tyler, A.N.; Spyrakos, E. Characterising Retrieval Uncertainty of Chlorophyll-a Algorithms in Oligotrophic and Mesotrophic Lakes and Reservoirs. ISPRS J. Photogramm. Remote Sens. 2022, 190, 279–300. [Google Scholar] [CrossRef]
- Ogashawara, I. The Use of Sentinel-3 Imagery to Monitor Cyanobacterial Blooms. Environments 2019, 6, 60. [Google Scholar] [CrossRef]
- Kirstein, V.; Bitterich, L.; Drost, S.; Vogt, A.; Pakzad, K. Copernicus Dienste Für Die Wasserwirtschaft—Ergebnisse Aus Dem Projekt WaCoDiS. Kw Korresp. Wasserwirtsch. 2021, 14, 486. [Google Scholar]
- Attila, J.; Kauppila, P.; Kallio, K.Y.; Alasalmi, H.; Keto, V.; Bruun, E.; Koponen, S. Applicability of Earth Observation Chlorophyll-a Data in Assessment of Water Status via MERIS—With Implications for the Use of OLCI Sensors. Remote Sens. Environ. 2018, 212, 273–287. [Google Scholar] [CrossRef]
- Papathanasopoulou, E.; Simis, S.; Alikas, K.; Ansper, A.; Anttila, S.; Attila, J.; Barillé, A.-L.; Barillé, L.; Brando, V.; Bresciani, M.; et al. [White Paper] Satellite-Assisted Monitoring of Water Quality to Support the Implementation of the Water Framework Directive; Zenodo: Geneva, Switzerland, 2019. [Google Scholar] [CrossRef]
- Rinke, K.; Globevnik, L.; Šubelj, G.; Snoj, L. Satellite-Based Monitoring of Cyanobacteria in Bathing Waters; European Topic Centre on Inland, Coastal and Marine Waters (ETC/ICM): Magdeburg, Germany, 2022; p. 35. [Google Scholar]
- Neil, C.; Spyrakos, E.; Hunter, P.D.; Tyler, A.N. A Global Approach for Chlorophyll-a Retrieval across Optically Complex Inland Waters Based on Optical Water Types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Spyrakos, E.; Hunter, P.; Simis, S.; Neil, C.; Riddick, C.; Wang, S.; Varley, A.; Blake, M.; Groom, S.; Palenzuela, J.T.; et al. Moving towards Global Satellite Based Products for Monitoring of Inland and Coastal Waters. Regional Examples from Europe and South America. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020. [Google Scholar]
- European Parliament; Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of the 23 October 2000: Establishing Framework for the Community Action in the Field of Water Policy (WFD). Off. J. Eur. Comm. 2000, L327, 321–371. [Google Scholar]
- European Parliament; Council of the European Union. Bathing Water Directive (BWD). Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160/EEC. Off. J. Eur. Union 2006, L64, 37–51. [Google Scholar]
- Politi, E.; Cutler, M.E.J.; Carvalho, L.; Rowan, J.S. A Global Typological Approach to Classify Lakes Based on Their Eutrophication Risk. Aquat. Sci. 2024, 86, 52. [Google Scholar] [CrossRef]
- Binding, C.E.; Pizzolato, L.; Zeng, C. EOLakeWatch; Delivering a Comprehensive Suite of Remote Sensing Algal Bloom Indices for Enhanced Monitoring of Canadian Eutrophic Lakes. Ecol. Indic. 2021, 121, 106999. [Google Scholar] [CrossRef]
- Ho, J.; Michalak, A.M.; Pahlevan, N. Widespread Global Increase in Intense Lake Phytoplankton Blooms since the 1980s. Nature 2019, 574, 667–670. [Google Scholar] [CrossRef]
- Gilarranz, L.J.; Narwani, A.; Odermatt, D.; Siber, R.; Dakos, V. Regime Shifts, Trends, and Variability of Lake Productivity at a Global Scale. Proc. Natl. Acad. Sci. USA 2022, 119, e2116413119. [Google Scholar] [CrossRef] [PubMed]
- Chawla, I.; Karthikeyan, L.; Mishra, A.K. A Review of Remote Sensing Applications for Water Security: Quantity, Quality, and Extremes. J. Hydrol. 2020, 585, 124826. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global Lake Responses to Climate Change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Irani Rahaghi, A.; Odermatt, D.; Anneville, O.; Sepúlveda Steiner, O.; Reiss, R.S.; Amadori, M.; Toffolon, M.; Jacquet, S.; Harmel, T.; Werther, M.; et al. Combined Earth Observations Reveal the Sequence of Conditions Leading to a Large Algal Bloom in Lake Geneva. Commun. Earth Environ. 2024, 5, 229. [Google Scholar] [CrossRef]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and Restoring Europe’s Waters: An Analysis of the Future Development Needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, Y.; Hallikainen, M. Water Quality Monitoring Using Remote Sensing in Support of the EU Water Framework Directive (WFD): A Case Study in the Gulf of Finland. Environ. Monit. Assess. 2007, 124, 157–166. [Google Scholar] [CrossRef]
- Schröder, T.; Schmidt, S.I.; Kutzner, R.D.; Bernert, H.; Stelzer, K.; Friese, K.; Rinke, K. Exploring Spatial Aggregations and Temporal Windows for Water Quality Match-up Analysis Using Sentinel-2 MSI and Sentinel-3 OLCI Data. Remote Sens. 2024, 16, 2798. [Google Scholar] [CrossRef]
- ESA S2 Mission—Overview of Sentinel-2 Mission. 2024. Available online: https://sentiwiki.copernicus.eu/web/s2-mission (accessed on 15 August 2024).
- Chambrelan, A. Sentinel-2 S2 MPC Level-2A Algorithm Theoretical Basis Document; Ref. S2-PDGS-MPC-ATBD-L2A. 2023. Available online: https://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-ATBD-V2.10.0.pdf (accessed on 15 August 2023).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 Mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Runge, A.; Grosse, G. Mosaicking Landsat and Sentinel-2 Data to Enhance Landtrendr Time Series Analysis in Northern High Latitude Permafrost Regions. Remote Sens. 2020, 12, 2471. [Google Scholar] [CrossRef]
- DIN EN ISO 7027-1:2016-11; Water Quality—Determination of Turbidity—Part 1: Quantitative Methods (ISO 7027-1:2016); German Version EN ISO 7027-1:2016. Beuth Verlag GmbH: Berlin, Germany, 2016.
- DIN 38409-60:2019-12; German Standard Methods for the Examination of Water, Waste Water and Sludge—Parameters Characterizing Effects and Substances (Group H)—Part 60: Spectrometric Determination of the Chlorophyll-a Concentration in Water (H 60). Beuth Verlag GmbH: Berlin, Germany, 2020.
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the ‘Living Planet Symposium 2016’, Prague, Czech Republic, 9–13 May 2016. ESA-SP 740. [Google Scholar]
- Doerffer, R.; Schiller, H. The MERIS Case 2 Water Algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Matthews, M.W.; Odermatt, D. Improved Algorithm for Routine Monitoring of Cyanobacteria and Eutrophication in Inland and Near-Coastal Waters. Remote Sens. Environ. 2015, 156, 374–382. [Google Scholar] [CrossRef]
- Pitarch, J.; Volpe, G.; Colella, S.; Krasemann, H.; Santoleri, R. Remote Sensing of Chlorophyll in the Baltic Sea at Basin Scale from 1997 to 2012 Using Merged Multi-Sensor Data. Ocean Sci. 2016, 12, 379–389. [Google Scholar] [CrossRef]
- Wevers, J.; Müller, D.; Kirches, G.; Quast, R.; Brockmann, C. IdePix for Sentinel-3 OLCI Algorithm Theoretical Basis Document; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Wevers, J.; Müller, D.; Scholze, J.; Kirches, G.; Quast, R.; Brockmann, C. IdePix for Sentinel-2 MSI Algorithm Theoretical Basis Document; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A Single Algorithm to Retrieve Turbidity from Remotely-Sensed Data in All Coastal and Estuarine Waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef]
- Nechad, B.; Dogliotti, A.I.; Ruddick, K.G.; Doxaran, D. Particulate Backscattering and Suspended Matter Concentration Retrieval from Remote-Sensed Turbidity in Various Coastal and Riverine Turbid Waters. In Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. ESA-SP 740. [Google Scholar]
- Heege, T.; Fischer, J. Mapping of Water Constituents in Lake Constance Using Multispectral Airborne Scanner Data and a Physically Based Processing Scheme. Can. J. Remote Sens. 2004, 30, 77–86. [Google Scholar] [CrossRef]
- Bresciani, M.; Giardino, C.; Stroppiana, D.; Dessena, M.A.; Buscarinu, P.; Cabras, L.; Schenk, K.; Heege, T.; Bernet, H.; Bazdanis, G.; et al. Monitoring Water Quality in Two Dammed Reservoirs from Multispectral Satellite Data. Eur. J. Remote Sens. 2019, 52, 113–122. [Google Scholar] [CrossRef]
- Heege, T.; Kiselev, V.; Wettle, M.; Hung, N.N. Operational Multi-Sensor Monitoring of Turbidity for the Entire Mekong Delta. Int. J. Remote Sens. 2014, 35, 2910–2926. [Google Scholar] [CrossRef]
- Kauer, T.; Kutser, T.; Arst, H.; Danckaert, T.; Nõges, T. Modelling Primary Production in Shallow Well Mixed Lakes Based on MERIS Satellite Data. Remote Sens. Environ. 2015, 163, 253–261. [Google Scholar] [CrossRef]
- Schaeffer, B.; Salls, W.; Coffer, M.; Lebreton, C.; Werther, M.; Stelzer, K.; Urquhart, E.; Gurlin, D. Merging of the Case 2 Regional Coast Colour and Maximum-Peak Height Chlorophyll-a Algorithms: Validation and Demonstration of Satellite-Derived Retrievals across US Lakes. Environ. Monit. Assess. 2022, 194, 179. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance Metrics for the Assessment of Satellite Data Products: An Ocean Color Case Study. Opt. Express 2018, 26, 7404. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A Global Assessment of Atmospheric Correction Methods for Landsat-8 and Sentinel-2 over Lakes, Rivers, and Coastal Waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Ellis, E.A.; Allen, G.H.; Riggs, R.M.; Gao, H.; Li, Y.; Carey, C.C. Bridging the Divide between Inland Water Quantity and Quality with Satellite Remote Sensing: An Interdisciplinary Review. WIREs Water 2024, 11, e1725. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef]
- Papenfus, M.; Schaeffer, B.; Pollard, A.I.; Loftin, K. Exploring the Potential Value of Satellite Remote Sensing to Monitor Chlorophyll-a for US Lakes and Reservoirs. Environ. Monit. Assess. 2020, 192, 808. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A Multi-Sensor Approach for the on-Orbit Validation of Ocean Color Satellite Data Products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- CEOS. Working Group on Calibration and Validation CEOS WGCV Terms of Reference Version 1.1 2022; CEOS: Geneva, Switzerland, 2022.
- EUMETSAT. Sentinel-3 Scientific Validation Team Implementation Plan; EUMETSAT: Darmstadt, Germany, 2015.
- EUMETSAT. Recommendations for Sentinel-3 OLCI Ocean Colour Product Validations in Comparison with In situ Measurements—Matchup Protocols; EUMETSAT: Darmstadt, Germany, 2021.
- Simis, S.; Stelzer, K.; Dagmar Müller; Selmes, N. Copernicus Global Land Operations “Cryosphere and Water” ”CGLOPS-2” Framework Service Contract N° 199496 (JRC) Quality Assessment Report Lake Water Quality 100M Products Version 1.1.0 2020; Copernicus: Brussels, Belgium, 2020. [Google Scholar]
- Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [PubMed]
- Zibordi, G.; Voss, K.J.; Johnson, B.C.; Mueller, J.L. Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation; IOCCG Protocol Series; IOCCG: Dartmouth, NS, Canada, 2019; Volume 3: Protocols for Satellite Ocean Colour Data Validation: In situ Optical Radiometry (v3.0). [Google Scholar]
- Ruddick, K.G.; Voss, K.; Boss, E.; Castagna, A.; Frouin, R.; Gilerson, A.; Hieronymi, M.; Johnson, B.C.; Kuusk, J.; Lee, Z.; et al. Review of Protocols for Fiducial Reference Measurements of Water-Leaving Radiance for Validation of Satellite Remote-Sensing Data over Water. Remote Sens. 2019, 11, 2198. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Gurlin, D.; Pahlevan, N.; Alikas, K.; Anstee, J.; Balasubramanian, S.V.; Barbosa, C.C.F.; Binding, C.; Bracher, A.; Bresciani, M.; et al. GLORIA—A Globally Representative Hyperspectral in situ Dataset for Optical Sensing of Water Quality. Sci. Data 2023, 10, 100. [Google Scholar] [CrossRef]
- ISO 10260; Water Quality—Measurement of Biochemical Parameters—Spectrometric Determination of the Chlorophyll-a Concentration. ISO (International Standardization Organization): Geneva, Switzerland, 1992.
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A Machine Learning Approach to Estimate Chlorophyll-a from Landsat-8 Measurements in Inland Lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing Continuity and Increased Precision for Measuring Multi-Decadal Time Series of Total Suspended Matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Domínguez Gómez, J.A.; Alonso, C.A.; García, A.A. Remote Sensing as a Tool for Monitoring Water Quality Parameters for Mediterranean Lakes of European Union Water Framework Directive (WFD) and as a System of Surveillance of Cyanobacterial Harmful Algae Blooms (SCyanoHABs). Environ. Monit. Assess. 2011, 181, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.A.; Ortiz, J.; Bonini, N.; Shuman, M.; Sydow, C. Application of Aqua MODIS Sensor Data for Estimating Chlorophyll a in the Turbid Case 2 Waters of Lake Erie Using Bio-Optical Models. GIScience Remote Sens. 2016, 53, 483–505. [Google Scholar] [CrossRef]
- Odermatt, D.; Danne, O.; Philipson, P.; Brockmann, C. Diversity II Water Quality Parameters from ENVISAT (2002–2012): A New Global Information Source for Lakes. Earth Syst. Sci. Data 2018, 10, 1527–1549. [Google Scholar] [CrossRef]
- Havskum, H.; Schlüter, L.; Scharek, R.; Berdalet, E.; Jacquet, S. Routine Quantification of Phytoplankton Groups‹Microscopy or Pigment Analyses? Mar. Ecol. Prog. Ser. 2004, 273, 31–42. [Google Scholar] [CrossRef]
- Jacobsen, T.R.; Rai, H. Comparison of Spectrophotometric, Fluorometric and High Performance Liquid Chromatography Methods for Determination of Chlorophyll a in Aquatic Samples: Effects of Solvent and Extraction Procedures. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1990, 75, 207–217. [Google Scholar] [CrossRef]
- Marker, A.F.H. The Use of Acetone and Methanol in the Estimation of Chlorophyll in the Presence of Phaeophytin. Freshw. Biol. 1972, 2, 361–385. [Google Scholar] [CrossRef]
- Seegers, B.N.; Werdell, P.J.; Vandermeulen, R.A.; Salls, W.; Stumpf, R.P.; Schaeffer, B.A.; Owens, T.J.; Bailey, S.W.; Scott, J.P.; Loftin, K.A. Satellites for Long-Term Monitoring of Inland U.S. Lakes: The MERIS Time Series and Application for Chlorophyll-a. Remote Sens. Environ. 2021, 266, 112685. [Google Scholar] [CrossRef]
- Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft. Auswertung des LÜRV B11 “Chlorophyll Im Oberflächenwasser“. Available online: https://www.bful.sachsen.de/archiv-4400.html?_cp=%7B%22accordion-content-4591%22%3A%7B%222%22%3Atrue%7D%2C%22previousOpen%22%3A%7B%22group%22%3A%22accordion-content-4591%22%2C%22idx%22%3A2%7D%7D. 2020 (accessed on 15 April 2024).
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Inter-Comparison of Methods for Chlorophyll-a Retrieval: Sentinel-2 Time-Series Analysis in Italian Lakes. Remote Sens. 2021, 13, 2381. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake. Remote Sens. 2016, 8, 941. [Google Scholar] [CrossRef]
- Keith, D.J.; Milstead, B.; Walker, H.; Snook, H.; Szykman, J.J.; Wusk, M.; Kagey, L.; Howell, C.; Mellanson, C.; Drueke, C. Trophic Status, Ecological Condition, and Cyanobacteria Risk of New England Lakes and Ponds Based on Aircraft Remote Sensing. J. Appl. Remote Sens. 2012, 6, 063577. [Google Scholar] [CrossRef]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical Types of Inland and Coastal Waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; Odermatt, D.; Hunter, P.D.; Brockmann, C.; Présing, M.; Balzter, H.; Tóth, V.R. Satellite Remote Sensing of Phytoplankton Phenology in Lake Balaton Using 10years of MERIS Observations. Remote Sens. Environ. 2015, 158, 441–452. [Google Scholar] [CrossRef]
- Matthews, M.W. Eutrophication and Cyanobacterial Blooms in South African Inland Waters: 10years of MERIS Observations. Remote Sens. Environ. 2014, 155, 161–177. [Google Scholar] [CrossRef]
Variable | Unit | Minimum | Maximum |
---|---|---|---|
Chlorophyll-a | µg/L | 0.01 | 400 |
Turbidity | FNU | 0.01 | 100 |
Secchi depth | m | 0.05 | 20 |
Workflow | eoapp AQUA | CyanoAlert | Combined | ||||
---|---|---|---|---|---|---|---|
Mission | S2 | S3 | S2 | S3 | S2 | S3 | |
slope | |||||||
tur | 0.8 | 0.8 | 0.7 | 1 | 0.6 | 0.8 | |
Variable | chl | 0.8 | 0.4 | 0.7 | 0.9 | 0.8 | 0.8 |
secchi | 0.8 | 0.5 | 0.9 | 0.9 | 0.8 | 0.7 | |
R2 | |||||||
tur | 0.35 | 0.44 | 0.49 | 0.59 | 0.43 | 0.69 | |
Variable | chl | 0.41 | 0.28 | 0.5 | 0.66 | 0.63 | 0.71 |
secchi | 0.57 | 0.38 | 0.77 | 0.8 | 0.68 | 0.7 | |
MAE | |||||||
tur | 3.5 | 2.7 | 2.2 | 1.9 | 2.4 | 1.9 | |
Variable | chl | 3.1 | 3.2 | 2.2 | 2.2 | 2 | 1.9 |
secchi | 2.2 | 2.4 | 1.5 | 1.6 | 1.8 | 1.7 | |
RMSE | |||||||
tur | 14.1 | 11.2 | 4.3 | 15.6 | 2.5 | 11.2 | |
Variable | chl | 34.2 | 44.2 | 20.9 | 30.6 | 20.7 | 27.2 |
secchi | 3.7 | 3 | 1.8 | 2 | 2.3 | 1.8 | |
MB | |||||||
tur | 0.7 | 0.4 | 0.7 | 0.6 | 0.6 | 0.5 | |
Variable | chl | 0.6 | 0.5 | 1.1 | 1.3 | 1 | 1.1 |
secchi | 1.8 | 2 | 1.2 | 0.8 | 1.5 | 1.3 | |
N | |||||||
tur | 75 | 35 | 70 | 31 | 50 | 23 | |
Variable | chl | 314 | 486 | 289 | 301 | 249 | 269 |
secchi | 323 | 460 | 288 | 269 | 238 | 235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, S.I.; Schröder, T.; Kutzner, R.D.; Laue, P.; Bernert, H.; Stelzer, K.; Friese, K.; Rinke, K. Evaluating Satellite-Based Water Quality Sensing of Inland Waters on Basis of 100+ German Water Bodies Using 2 Different Processing Chains. Remote Sens. 2024, 16, 3416. https://doi.org/10.3390/rs16183416
Schmidt SI, Schröder T, Kutzner RD, Laue P, Bernert H, Stelzer K, Friese K, Rinke K. Evaluating Satellite-Based Water Quality Sensing of Inland Waters on Basis of 100+ German Water Bodies Using 2 Different Processing Chains. Remote Sensing. 2024; 16(18):3416. https://doi.org/10.3390/rs16183416
Chicago/Turabian StyleSchmidt, Susanne I., Tanja Schröder, Rebecca D. Kutzner, Pia Laue, Hendrik Bernert, Kerstin Stelzer, Kurt Friese, and Karsten Rinke. 2024. "Evaluating Satellite-Based Water Quality Sensing of Inland Waters on Basis of 100+ German Water Bodies Using 2 Different Processing Chains" Remote Sensing 16, no. 18: 3416. https://doi.org/10.3390/rs16183416
APA StyleSchmidt, S. I., Schröder, T., Kutzner, R. D., Laue, P., Bernert, H., Stelzer, K., Friese, K., & Rinke, K. (2024). Evaluating Satellite-Based Water Quality Sensing of Inland Waters on Basis of 100+ German Water Bodies Using 2 Different Processing Chains. Remote Sensing, 16(18), 3416. https://doi.org/10.3390/rs16183416