Artificial Ducts Created via High-Power HF Radio Waves at EISCAT
Abstract
:1. Introduction
2. Experimental Arrangement
3. Observational Results
3.1. Characteristics of Artificial Ducts Created via X-Mode HF Pump Waves
3.2. Comparison of the X- and O-Mode Phenomena in Identical Background Conditions
3.3. Experimental Thresholds of Excitation of Electron Density Ducts
4. Discussion
- Field-aligned electron density enhancements of Ne − Neo/Neo = 50–80% from the background Neo level;
- Extend along the magnetic flux tube from ~300 to 500 km;
- A transverse size in the north–south direction of 3–4°;
- A duct development time of 50–60 s;
- A duct decay time (time after the EISCAT/Heating is switched off) within 2–5 min;
- A threshold electric field of 0.24–0.27 V/m (in a free space).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFAI | Artificial field-aligned irregularity |
CUTLASS | Co-operative UK Twin Located Auroral Sounding System |
EISCAT | European Incoherent SCATter |
ERP | Effective radiated power |
HF | High-frequency |
HFIL | HF-enhanced ion line |
HFILDOWN | Downshifted HF-enhanced ion line |
HFIL0 | Non-shifted HF-enhanced ion line |
HFILUP | Upshifted HF-enhanced ion line |
HFPL | HF-induced plasma line |
ISR | Incoherent scatter radar |
MZ | Magnetic zenith |
UHF | Ultra-high-frequency |
UT | Universal time |
References
- Storey, L.R.O. An investigation of whistling atmospherics. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 1953, 246, 113–141. [Google Scholar] [CrossRef]
- Helliwell, R.A. Whistlers and Related Ionospheric Phenomena; Stanford University Press: Stanford, CA, USA, 1965. [Google Scholar]
- Siingh, D.; Singh, A.K.; Patel, R.P.; Singh, R.; Singh, R.P.; Veenadhari, B.; Mukherjee, M. Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves. Surv. Geophys. 2008, 29, 499–551. [Google Scholar] [CrossRef]
- Dunckel, N.; Helliwell, R.A. Whistler-mode emissions on the OGO 1 satellite. J. Geophys. Res. 1969, 74, 6371–6385. [Google Scholar] [CrossRef]
- Woodroffe, J.R.; Streltsov, A.V.; Vartanyan, A.; Milikh, G.M. Whistler propagation in ionospheric density ducts: Simulations and DEMETER observations. J. Geophys. Res. Space Phys. 2013, 118, 7011–7018. [Google Scholar] [CrossRef]
- Inan, U.S.; Bell, T.F.; Bortnik, J.; Albert, J.M. Controlled precipitation of radiation belt electrons. J. Geophys. Res. 2003, 108, 1186. [Google Scholar] [CrossRef]
- Koons, H. Observations of large-amplitude, whistler-mode wave ducts in the outer plasmasphere. J. Geophys. Res. 1989, 94, 15393–15397. [Google Scholar] [CrossRef]
- Carpenter, D.L.; Spasojević, M.A.; Bell, T.F.; Inan, U.S.; Reinisch, B.W.; Galkin, I.A.; Benson, R.F.; Green, J.L.; Fung, S.F.; Boardsen, S.A. Small-scale field-aligned plasmaspheric density structures inferred from the Radio Plasma Imager on IMAGE. J. Geophys. Res. 2002, 107, SMP22-1–SMP22-19. [Google Scholar] [CrossRef]
- Streltsov, A.V.; Lampe, M.; Ganguli, G. Whistler propagation in nonsymmetrical density channels. J. Geophys. Res. 2007, 112, A06226. [Google Scholar] [CrossRef]
- Sonwalkar, V.S. The influence of plasma density irregularities on Whistler-mode wave propagation. Lect. Notes Phys. 2006, 687, 141–190. [Google Scholar] [CrossRef]
- Robinson, T.R. The heating of the high latitude ionosphere by high power radio waves. Phys. Rep. 1989, 179, 79–209. [Google Scholar] [CrossRef]
- Gurevich, A.V. Nonlinear effects in the ionosphere. Phys. Uspekhi 2007, 50, 1091–1121. [Google Scholar] [CrossRef]
- Kuo, S.P. Overview of Ionospheric Modification by High Frequency (HF) Heaters-Theory. Prog. Electromagn. Res. B 2014, 60, 141–155. [Google Scholar] [CrossRef]
- DuBois, D.F.; Rose, H.A.; Russell, D. Space and time distribution of HF excited Langmuir turbulence in the ionosphere: Comparison of theory and experiment. J. Geophys. Res. 1993, 98, 17543–17567. [Google Scholar] [CrossRef]
- Milikh, G.M.; Papadopoulos, K.; Shroff, H.; Chang, C.; Wallace, T.; Mishin, E.; Parrot, M.; Berthelier, J. Formation of artificial ionospheric ducts. Geophys. Res. Lett. 2008, 35, L17104. [Google Scholar] [CrossRef]
- Fallen, C.T.; Secan, J.A.; Watkins, B.J. In-situ measurements of topside ionosphere electron density enhancement during an HF-modification experiment. Geophys. Res. Lett. 2011, 38, L08101. [Google Scholar] [CrossRef]
- Vartanyan, A.; Milikh, G.M.; Mishin, E.; Parrot, M.; Galkin, I.; Reinisch, B.; Huba, J.; Joyce, G.; Papadopoulos, K. Artificial ducts caused by HF heating of the ionosphere by HAARP. J. Geophys. Res. 2012, 117, A10307. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Rietveld, M.T.; Yeoman, T.K.; Wright, D.M.; Rother, M.; Lühr, H.; Mishin, E.V.; Roth, C. Results of Russian Experiments Dealing with the Impact of Powerful HF Radio waves on the High Latitude Ionosphere Using the EISCAT Facilities. Geomagn. Aeron. 2011, 51, 1109–1120. [Google Scholar] [CrossRef]
- Frolov, V.L.; Rapoport, V.O.; Komrakov, G.P.; Belov, A.S.; Markov, G.A.; Parrot, M.; Rauch, J.L.; Mishin, E.V. Density ducts formed by heating the Earth’s ionosphere with high-power HF radio waves. JETP Lett. 2008, 88, 790–794. [Google Scholar] [CrossRef]
- Frolov, V.L.; Rapoport, V.O.; Schorokhova, E.A.; Belov, A.S.; Parrot, M.; Rauch, J.-L. Features of the electromagnetic and plasma disturbances induced at the altitudes of the earth’s outer ionosphere by modification of the ionospheric F2 region using high-power radio waves radiated by the Sura heating facility. Radiophys. Quantum Electron. 2016, 59, 177–198. [Google Scholar] [CrossRef]
- Milikh, G.M.; Demekhov, A.; Vartanyan, A.; Mishin, E.V.; Huba, J. A new model for formation of artificial ducts due to ionospheric HF-heating. Geophys. Res. Lett. 2012, 39, L10102. [Google Scholar] [CrossRef]
- Rietveld, M.T.; Kosch, M.T.; Blagoveshchenskaya, N.F.; Kornienko, V.A.; Leyser, T.B.; Yeoman, T.M. Ionospheric electron heating, optical emissions, and striations induced by powerful HF radio waves at high latitudes: Aspect angle dependence. J. Geophys. Res. 2003, 108, 1141–1156. [Google Scholar] [CrossRef]
- Kosch, M.; Ogava, Y.; Rietveld, M.; Nozawa, S.; Fujii, R. An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT. J. Geophys. Res. 2010, 115, A12317. [Google Scholar] [CrossRef]
- Kosch, M.J.; Vickers, H.; Ogawa, Y.; Senior, A.; Blagoveshchenskaya, N. First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT. Geophys. Res. Lett. 2014, 41, 7427–7435. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Kornienko, V.A.; Borisova, T.D.; Rietveld, M.T.; Bõsinger, T.; Thidé, B.; Leyser, T.B.; Brekke, A. Heater-induced phenomena in a coupled ionosphere–magnetosphere system. Adv. Space Res. 2006, 38, 2495–2502. [Google Scholar] [CrossRef]
- Stubbe, P. Review of ionospheric modification experiments at Tromso. J. Atmos. Terr. Phys. 1996, 58, 349–368. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Yeoman, T.; Rietveld, M.T.; Ivanova, I.M.; Baddeley, L.J. Artificial field-aligned irregularities in the high-latitude F region of the ionosphere induced by an X-mode HF heater wave. Geophys. Res. Lett. 2011, 38, L08802. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Kalishin, A.S.; Yeoman, T.K.; Schmelev, Y.A.; Leonenko, E.E. Characterization of Artificial, Small-Scale, Ionospheric Irregularities in the High-Latitude F Region Induced by High-Power, High-Frequency Radio Waves of Extraordinary Polarization. Geomagn. Aeron. 2019, 59, 759–773. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Kosch, M.; Sergienko, T.; Brändström, U.; Yeoman, T.K.; Häggström, I. Optical and Ionospheric Phenomena at EISCAT under Continuous X-mode HF Pumping. J. Geophys. Res. Space Phys. 2014, 119, 10483–10498. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Yeoman, T.K. Comment on the article “Parametric Instability Induced by X-Mode Wave Heating at EISCAT” by Wang et al. 2016. J. Geophys. Res. Space Phys. 2017, 122, 12570–12586. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Kalishin, A.S.; Yeoman, T.K.; Häggström, I. Distinctive features of Langmuir and Ion-acoustic Turbulences induced by O- and X-mode HF Pumping at EISCAT. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028203. [Google Scholar] [CrossRef]
- Kalishin, A.S.; Blagoveshchenskaya, N.F.; Borisova, T.D.; Yeoman, T.K. Ion Gyro-Harmonic Structures in Stimulated Emission Excited by X-Mode High Power HF Radio Waves at EISCAT. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028989. [Google Scholar] [CrossRef]
- Rietveld, M.T.; Senior, A.; Markkanen, J.; Westman, A. New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci. 2016, 51, 1533–1546. [Google Scholar] [CrossRef]
- Rishbeth, H.; Eyken, T. EISCAT: Early history and the first ten years of operation. J. Atmos. Sol. Terr. Phys. 1993, 55, 525–542. [Google Scholar] [CrossRef]
- Beynon, W.J.G.; Williams, P.J.S. Incoherent scatter of radio waves from the ionosphere. Rep. Prog. Phys. 1975, 41, 909–956. [Google Scholar] [CrossRef]
- Alcaydé, D. (Ed.) Incoherent Scatter Theory, Practice and Science: Collection of Lectures Given in Cargese; EISCAT Technical Report 97/53; EISCAT Scientific Association: Kiruna, Sweden, 1997; p. 314. [Google Scholar]
- Lehtinen, M.S.; Huuskonen, A. General incoherent scatter analysis and GUISDAP. J. Atmos. Sol. Terr. Phys. 1996, 58, 435–452. [Google Scholar] [CrossRef]
- Lester, M.; Chapman, P.J.; Cowley, S.W.H.; Crooks, S.J.; Davies, J.A.; Hamadyk, P.; McWilliams, K.A.; Milan, S.E.; Parsons, M.J.; Payne, D.B.; et al. Stereo CUTLASS: A new capability for the SuperDARN radars. Ann. Geophys. 2004, 22, 459–473. [Google Scholar] [CrossRef]
- Borisova, T.D.; Blagoveshchenskaya, N.F.; Kalishin, A.S.; Kosch, M.; Senior, A.; Rietveld, M.T.; Yeoman, T.K.; Häggström, I. Phenomena in the high-latitude ionospheric F region induced by a HF heater wave at frequencies near the fourth electron gyroharmonic. Radiophys. Quant. Electr. 2014, 57, 1–19. [Google Scholar] [CrossRef]
- Borisova, T.D.; Blagoveshchenskaya, N.F.; Kalishin, A.S.; Rietveld, M.T.; Yeoman, T.K.; Hägström, I. Modification of the high-latitude ionospheric Fregion by high-power HF radio waves at frequencies near the fifth and sixth electron gyroharmonics. Radiophys. Quantum Electron. 2016, 59, 561–585. [Google Scholar] [CrossRef]
- Wu, J.; Wu, J.; Xu, Z. Results of ionospheric heating experiments involving an enhancement in electron density in the high latitude ionosphere. Plasma Sci. Technol. 2016, 18, 890–896. [Google Scholar] [CrossRef]
- Blagoveshchenskaya, N.F.; Borisova, T.D.; Kalishin, A.S.; Egorov, I.M.; Zagorskiy, G.A. Disturbances of electron density in the high latitude upper (F-region) ionosphere induced by X-mode HF pump waves from EISCAT UHF radar observations. Probl. Arktikii Antarktiki Arct. Antarct. Res. 2022, 68, 248–257. [Google Scholar] [CrossRef]
- Carlson, H.C.; Djuth, F.T.; Zhang, L.D. Creating space plasma from the ground. J. Geophys. Res. Space Phys. 2016, 122, 978–999. [Google Scholar] [CrossRef]
- Carlson, H.C.; Wickwar, V.B.; Mantas, G.P. Observations of fluxes of suprathermal electrons accelerated by HF excited instabilities. J. Atmos. Terr. Phys. 1982, 44, 1089–1100. [Google Scholar] [CrossRef]
- Pedersen, T.R.; Esposito, R.; Starks, M.; McCarrick, M. Quantitative determination of HF radio-induced optical emission production efficiency at high latitudes. J. Geophys. Res. 2008, 113, A11316. [Google Scholar] [CrossRef]
- Gurevich, A.V. Nonlinear Phenomena in the Ionosphere; Springer: New York, NY, USA, 1978. [Google Scholar]
- Grach, S.M.; Trakhtengerts, V.Y. Parametric excitation of ionospheric irregularities extended along the magnetic field. Radiophys. Quant. Electron. 1975, 18, 951–957. [Google Scholar] [CrossRef]
- Gurevich, A.V.; Zybin, K.P.; Carlson, H.C.; Pedersen, T. Magnetic zenith effect in ionospheric modifications. Phys. Lett. A 2002, 305, 264–274. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blagoveshchenskaya, N.F.; Borisova, T.D.; Kalishin, A.S.; Egorov, I.M. Artificial Ducts Created via High-Power HF Radio Waves at EISCAT. Remote Sens. 2023, 15, 2300. https://doi.org/10.3390/rs15092300
Blagoveshchenskaya NF, Borisova TD, Kalishin AS, Egorov IM. Artificial Ducts Created via High-Power HF Radio Waves at EISCAT. Remote Sensing. 2023; 15(9):2300. https://doi.org/10.3390/rs15092300
Chicago/Turabian StyleBlagoveshchenskaya, Nataly F., Tatiana D. Borisova, Alexey S. Kalishin, and Ivan M. Egorov. 2023. "Artificial Ducts Created via High-Power HF Radio Waves at EISCAT" Remote Sensing 15, no. 9: 2300. https://doi.org/10.3390/rs15092300
APA StyleBlagoveshchenskaya, N. F., Borisova, T. D., Kalishin, A. S., & Egorov, I. M. (2023). Artificial Ducts Created via High-Power HF Radio Waves at EISCAT. Remote Sensing, 15(9), 2300. https://doi.org/10.3390/rs15092300