Estimation of Pb and Cd Content in Soil Using Sentinel-2A Multispectral Images Based on Ensemble Learning
Abstract
:1. Introduction
- Introduction of topographic features. When using remote sensing technology to monitor heavy metal concentrations in soil, the weak characteristic response of heavy metals in remote sensing images, as well as the possibility of spectral overlap with other soil components, can complicate detection due to the typically low content of heavy metals in soil. However, research has shown that topographic features are related to soil heavy metal concentrations, providing an indirect means of estimating their distribution in target soil [23].
- Proposal to establish the spatial characteristics of pollution sources. The primary sources of heavy metal pollutants in the study area are atmospheric sediments, sewage discharge, and irrigation resulting from mining activities, metallurgy, and industrial production [24]. As a result, pollution sources are typically identifiable. In this study, we propose to develop spatial characteristics of pollution sources to quantify the impact factors of pollutant diffusion and concentration, based on the relationship between soil heavy metal pollution sources and the accumulation of heavy metal pollutants.
- Application of ensemble learning. To improve the accuracy of estimating soil heavy metal content by remote sensing, we introduce an ensemble learning method, which has shown superior performance in modeling research across various fields. The proposed hybrid integrated model incorporates both spectral and spatial information, enhancing the stability and generalization ability of the model. By combining multiple individual models, the ensemble method improves the accuracy of soil heavy metal content estimation.
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Sampling and Laboratory Analysis
2.2.2. Satellite Data Acquisition and Processing
2.2.3. Quantification of Spatial Features of Potential Pollution Sources
- (a)
- Spatial distance between pollution source and sampling point
- (b)
- Azimuth of the line connecting the pollution source and the sampling point
2.2.4. Topographic Influence Factor
2.3. Ensemble Learning Methods
2.4. Model Accuracy Measure
2.5. Feature Importance Measure
2.6. Kriging
3. Results
3.1. Statistical Characteristics of Heavy Metal Content of Sample Soil
3.2. Spectral Feature Extraction
3.3. Model Estimation and Comparisons
3.4. Feature Importance Analysis
3.5. Spatial Distribution of Heavy Metal Contamination
4. Discussion
4.1. Soil Heavy Metal Contents
4.2. Comparison Prediction Performance of Models
4.3. Impact of Topography and Spatial Factors
4.4. Heavy Metal Concentration Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Spatial Feature | Correlation Coefficient | Topography Feature | Correlation Coefficient |
---|---|---|---|
JL_D | −0.26 9 ** | DEM | 0.062 |
JL_A | −0.502 ** | MF | −0.063 |
JY_D | −0.168 ** | GS | 0.061 |
JY_A | −0.397 ** | Sl | −0.139 * |
SB_D | −0.653 ** | Asp | 0.013 |
SB_A | −0.370 ** | WE | −0.091 |
WY_A | −0.501 ** | LsF | −0.044 |
WY_B | −0.506 ** | TWI | −0.096 |
YC_D | −0.552 ** | ||
YC_A | −0.259 ** |
Spatial Feature | Correlation Coefficient | Topography Feature | Correlation Coefficient |
---|---|---|---|
JL_D | −0.289 ** | DEM | 0.110 |
JL_A | −0.482 ** | MF | −0.072 |
JY_D | −0.243 ** | GS | 0.109 |
JY_A | −0.426 ** | Sl | −0.094 |
SB_D | −0.628 ** | Asp | 0.027 |
SB_A | −0.209 ** | WE | −0.053 |
WY_A | −0.461 ** | LsF | −0.041 |
WY_B | −0.497 ** | TWI | −0.140 * |
YC_D | −0.519 ** | ||
YC_A | −0.141 ** |
References
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef]
- The Report on the National General Survey of Soil Contamination. Available online: http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf (accessed on 14 January 2019).
- Zhong, X.; Chen, Z.; Li, Y.; Ding, K.; Liu, W.; Liu, Y.; Yuan, Y.; Zhang, M.; Baker, A.J.; Yang, W. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China. J. Hazard. Mater. 2020, 400, 123289. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chang, Q.; Liu, J.; Clevers, J.; Kooistra, L. Identification of soil heavy metal sources and improvement in spatial mapping based on soil spectral information: A case study in northwest China. Sci. Total Environ. 2016, 565, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, L.; Wanders, J.; Epema, G.; Leuven, R.; Wehrens, R.; Buydens, L. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Anal. Chim. Acta 2003, 484, 189–200. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, L.; Wong, A.; Clausi, D.A. Multi-Temporal Landsat-8 Images for Retrieval and Broad Scale Mapping of Soil Copper Concentration Using Empirical Models. Remote Sens. 2022, 14, 2311. [Google Scholar] [CrossRef]
- Govender, M.; Chetty, K.; Naiken, V.; Bulcock, H. A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation. Water SA 2008, 34, 147–154. [Google Scholar] [CrossRef]
- Khosravi, V.; Gholizadeh, A.; Saberioon, M. Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance. Environ. Pollut. 2022, 310, 119828. [Google Scholar] [CrossRef]
- Soodan, R.K.; Pakade, Y.B.; Nagpal, A.; Katnoria, J.K. Analytical techniques for estimation of heavy metals in soil ecosystem: A tabulated review. Talanta 2014, 125, 405–410. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, Q.; Jia, P.; Liu, J.; Bai, H. Estimating the heavy metal concentrations in topsoil in the Daxigou mining area, China, using multispectral satellite imagery. Sci. Rep. 2021, 11, 11718. [Google Scholar] [CrossRef]
- Gang, S.; Wenjiang, H.; Pengfei, C.; Shuai, G.; Xiu, W. Advances in UAV-based multispectral remote sensing applications. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 3. [Google Scholar]
- Kobayashi, N.; Tani, H.; Wang, X.; Sonobe, R. Crop classification using spectral indices derived from Sentinel-2A imagery. J. Inf. Telecommun. 2020, 4, 67–90. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A global analysis of Sentinel-2A, Sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Guo, M.; Yu, Z.; Xu, Y.; Huang, Y.; Li, C. ME-net: A deep convolutional neural network for extracting mangrove using sentinel-2A data. Remote Sens. 2021, 13, 1292. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vázquez, Á.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, P.; Qiao, B.; Wu, K. The spatial distribution and prediction of soil heavy metals based on measured samples and multi-spectral images in Tai Lake of China. Land 2021, 10, 1227. [Google Scholar] [CrossRef]
- Zhiyuan, W.; Dengfeng, W.; Huiping, Z.; Zhiping, Q. Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environ. Sci. 2011, 10, 1946–1952. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Huang, L.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Xian-Li, X.; Xian-Zhang, P.; Bo, S. Visible and near-infrared diffuse reflectance spectroscopy for prediction of soil properties near a copper smelter. Pedosphere 2012, 22, 351–366. [Google Scholar]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, K.-W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Kemper, T.; Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 2002, 36, 2742–2747. [Google Scholar] [CrossRef]
- Goodarzi, R.; Mokhtarzade, M.; Valadan Zoej, M.J. A robust fuzzy neural network model for soil lead estimation from spectral features. Remote Sens. 2015, 7, 8416–8435. [Google Scholar] [CrossRef]
- Liu, H.; Xiong, Z.; Jiang, X.; Liu, G.; Liu, W. Heavy metal concentrations in riparian soils along the Han River, China: The importance of soil properties, topography and upland land use. Ecol. Eng. 2016, 97, 545–552. [Google Scholar] [CrossRef]
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils; Springer: Berlin/Heidelberg, Germany, 2013; pp. 11–50. [Google Scholar]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A. Copernicus Sentinel-2A calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Chen, L.; Chen, L.; Zhang, Y.; Liu, Y. Estimating urban vegetation biomass from Sentinel-2A image data. Forests 2020, 11, 125. [Google Scholar] [CrossRef]
- Djamai, N.; Fernandes, R. Comparison of SNAP-derived Sentinel-2A L2A product to ESA product over Europe. Remote Sens. 2018, 10, 926. [Google Scholar] [CrossRef]
- Gitahi, J.; Hahn, M.; Ramirez, A. High-resolution urban aerosol monitoring using Sentinel-2 satellite images. Earth Obs. Geomat. Eng. 2019, 3, 102–111. [Google Scholar]
- Li, Y.; Chen, J.; Ma, Q.; Zhang, H.K.; Liu, J. Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1997–2021. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, M.; Yang, H.; Jin, Y.; Zhang, X.; Liu, H. Mapping regional soil organic matter based on sentinel-2a and modis imagery using machine learning algorithms and google earth engine. Remote Sens. 2021, 13, 2934. [Google Scholar] [CrossRef]
- Dokmanic, I.; Parhizkar, R.; Ranieri, J.; Vetterli, M. Euclidean distance matrices: Essential theory, algorithms, and applications. IEEE Signal Process. Mag. 2015, 32, 12–30. [Google Scholar] [CrossRef]
- Brümmer, G. Heavy Metal Species, Mobility and Availability in Soils. In The Importance of Chemical “Speciation” in Environmental Processes; Springer: Berlin/Heidelberg, Germany, 1986; pp. 169–192. [Google Scholar]
- Bolstad, P.V.; Stowe, T. An evaluation of DEM accuracy: Elevation, slope, and aspect. Photogramm. Eng. Remote Sens. 1994, 60, 1327–1332. [Google Scholar]
- Panagos, P.; Borrelli, P.; Meusburger, K. A new European slope length and steepness factor (LS-Factor) for modeling soil erosion by water. Geosciences 2015, 5, 117–126. [Google Scholar] [CrossRef]
- Wang, X.-C.; Klemeš, J.J.; Dong, X.; Fan, W.; Xu, Z.; Wang, Y.; Varbanov, P.S. Air pollution terrain nexus: A review considering energy generation and consumption. Renew. Sustain. Energy Rev. 2019, 105, 71–85. [Google Scholar] [CrossRef]
- Plaza, E.; Aamodt, A.; Ram, A.; Velde, W.; Someren, M.v. Integrated learning architectures. In Proceedings of the European Conference on Machine Learning, Vienna, Austria, 5–7 April 1993; pp. 427–441. [Google Scholar]
- Sutton, C.D. Classification and regression trees, bagging, and boosting. Handb. Stat. 2005, 24, 303–329. [Google Scholar]
- Huang, J.-C.; Ko, K.-M.; Shu, M.-H.; Hsu, B.-M. Application and comparison of several machine learning algorithms and their integration models in regression problems. Neural Comput. Appl. 2020, 32, 5461–5469. [Google Scholar] [CrossRef]
- Breiman, L. Stacked regressions. Mach. Learn. 1996, 24, 49–64. [Google Scholar] [CrossRef]
- Seewald, A.K. How to make stacking better and faster while also taking care of an unknown weakness. In Proceedings of the Proceedings of the Nineteenth International Conference on Machine Learning, San Francisco, CA, USA, 8–12 July 2002; pp. 554–561.
- Van den Broeck, G.; Lykov, A.; Schleich, M.; Suciu, D. On the tractability of SHAP explanations. J. Artif. Intell. Res. 2022, 74, 851–886. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, H.; Wu, B.; Li, G.; Zhou, L. Interpretable predictive model for shield attitude control performance based on XGboost and SHAP. Sci. Rep. 2022, 12, 1–14. [Google Scholar] [CrossRef]
- da Silveira, H.L.F.; Galvão, L.S.; Sanches, I.D.A.; de Sá, I.B.; Taura, T.A. Use of MSI/Sentinel-2 and airborne LiDAR data for mapping vegetation and studying the relationships with soil attributes in the Brazilian semi-arid region. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 179–190. [Google Scholar] [CrossRef]
- Baltas, H.; Yesilkanat, C.M.; Kiris, E.; Sirin, M. A study of the radiological baseline conditions around the planned Sinop (Turkey) nuclear power plant using the mapping method. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Huang, L. Comparison of several remote sensing image classification methods based on envi. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 42, 605–611. [Google Scholar] [CrossRef]
- Liao, Y.; Li, D.; Zhang, N. Comparison of interpolation models for estimating heavy metals in soils under various spatial characteristics and sampling methods. Trans. GIS 2018, 22, 409–434. [Google Scholar] [CrossRef]
- Dong, W.Q.Y.; Cui, Y.; Liu, X. Instances of soil and crop heavy metal contamination in China. Soil Sediment Contam. 2001, 10, 497–510. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Xu, Z.; Ren, M.; Guo, Q.; Hu, X.; Hu, G.; Wan, H.; Peng, P. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Saf. 2012, 78, 2–8. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef]
- Su, Y.; Guo, B.; Lei, Y.; Zhang, D.; Guo, X.; Suo, L.; Zhao, Y.; Bian, Y. An Indirect Inversion Scheme for Retrieving Toxic Metal Concentrations Using Ground-Based Spectral Data in a Reclamation Coal Mine, China. Water 2022, 14, 2784. [Google Scholar] [CrossRef]
- Ding, Q.; Cheng, G.; Wang, Y.; Zhuang, D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci. Total Environ. 2017, 578, 577–585. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Wan, Y.; Wu, R.; Feng, D.; Li, K. Source identification and comprehensive apportionment of the accumulation of soil heavy metals by integrating pollution landscapes, pathways, and receptors. Sci. Total Environ. 2021, 786, 147436. [Google Scholar] [CrossRef]
- Zhao, D.; Xie, D.; Yin, F.; Liu, L.; Feng, J.; Ashraf, T. Estimation of Pb Content Using Reflectance Spectroscopy in Farmland Soil near Metal Mines, Central China. Remote Sens. 2022, 14, 2420. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Nathanail, P.; Tian, L.; Ma, Y. Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environ. Pollut. 2017, 231, 1188–1200. [Google Scholar] [CrossRef]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Sodango, T.H.; Li, X.; Sha, J.; Bao, Z. Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. J. Health Pollut. 2018, 8, 53–70. [Google Scholar] [CrossRef]
- Pelfrêne, A.; Waterlot, C.; Mazzuca, M.; Nisse, C.; Cuny, D.; Richard, A.; Denys, S.; Heyman, C.; Roussel, H.; Bidar, G. Bioaccessibility of trace elements as affected by soil parameters in smelter-contaminated agricultural soils: A statistical modeling approach. Environ. Pollut. 2012, 160, 130–138. [Google Scholar] [CrossRef]
- Li, P.; Wu, T.; Jiang, G.; Pu, L.; Li, Y.; Zhang, J.; Xu, F.; Xie, X. An integrated approach for source apportionment and health risk assessment of heavy metals in subtropical agricultural soils, Eastern China. Land 2021, 10, 1016. [Google Scholar] [CrossRef]
- Yan, W.; Liu, D.; Peng, D.; Mahmood, Q.; Chen, T.; Wang, Y.; Li, S.; Chen, J. Spatial distribution and risk assessment of heavy metals in the farmland along mineral product transportation routes in Zhejiang, China. Soil Use Manag. 2016, 32, 338–349. [Google Scholar] [CrossRef]
- Cheng, H.; Li, M.; Zhao, C.; Li, K.; Peng, M.; Qin, A.; Cheng, X. Overview of trace metals in the urban soil of 31 metropolises in China. J. Geochem. Explor. 2014, 139, 31–52. [Google Scholar] [CrossRef]
- Zeng, X.-B.; Li, L.-F.; Mei, X.-R. Heavy metal content in Chinese vegetable plantation land soils and related source analysis. Agric. Sci. China 2008, 7, 1115–1126. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Hou, J.; Dang, Q.; Cui, D.; Xi, B.; Tan, W. Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. J. Hazard. Mater. 2020, 395, 122690. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Chen, D.; Zhang, X. Identification of potential sources of mercury (Hg) in farmland soil using a decision tree method in China. Int. J. Environ. Res. Public Health 2016, 13, 1111. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Gao, X. Assessment of potential ecological risk for soil heavy metals in Sanjiang Source Region: A case study of Yushu County, Qinghai Province. J. Agro-Environ. Sci 2016, 35, 1071–1080. [Google Scholar]
Metal | Number | Min | Max | Mean | SD 1 | CV 2 | SBV 3 |
---|---|---|---|---|---|---|---|
Pb | 235 | 26.54 | 1335 | 158.6 | 174.2 | 1.09 | 19.6 |
Cd | 235 | 0.19 | 13 | 2.155 | 2.071 | 0.96 | 0.074 |
Feature | Model | Pb | Cd | ||||
---|---|---|---|---|---|---|---|
RMSE | R2 | MAPE | RMSE | R2 | MAPE | ||
Spectrum | RF | 80.6873 | 0.5902 | 0.7307 | 1.0579 | 0.4307 | 0.8403 |
SVM | 152.9496 | 0.2017 | 0.7163 | 2.0968 | 0.0978 | 0.8107 | |
KNN | 98.2669 | 0.6797 | 0.6974 | 1.3883 | 0.4995 | 0.6620 | |
GBR | 92.5642 | 0.7158 | 0.6491 | 1.2412 | 0.6000 | 0.5388 | |
XGBoost | 88.5636 | 0.7398 | 0.5343 | 1.2568 | 0.5898 | 0.5436 | |
LightGBM | 93.5086 | 0.7100 | 0.7019 | 1.3456 | 0.5298 | 0.6201 | |
CatBoost | 86.3591 | 0.7526 | 0.5858 | 1.2139 | 0.6174 | 0.5694 | |
Stacking | 85.1186 | 0.7597 | 0.5093 | 1.4450 | 0.4578 | 0.6747 | |
Blending | 83.8055 | 0.7670 | 0.5858 | 1.1845 | 0.6356 | 0.5471 | |
Spectrum + Topography + Spatial | RF | 35.5321 | 0.9205 | 0.1868 | 0.4259 | 0.9077 | 0.2812 |
SVM | 119.5249 | 0.3609 | 0.3160 | 0.8075 | 0.6284 | 0.3695 | |
KNN | 29.8634 | 0.9439 | 0.1650 | 0.3368 | 0.9423 | 0.1634 | |
GBR | 34.0559 | 0.9270 | 0.2339 | 0.4766 | 0.8844 | 0.3218 | |
XGBoost | 30.7270 | 0.9406 | 0.2020 | 0.3583 | 0.9347 | 0.1952 | |
LightGBM | 35.5911 | 0.9203 | 0.2127 | 0.4361 | 0.9033 | 0.3199 | |
CatBoost | 38.4622 | 0.9069 | 0.2699 | 0.4313 | 0.9054 | 0.2986 | |
Stacking | 36.1974 | 0.9175 | 0.1726 | 0.4300 | 0.9060 | 0.2774 | |
Blending | 28.5708 | 0.9486 | 0.1723 | 0.3169 | 0.9489 | 0.1911 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Xie, S.; Liu, P.; Hua, Z.; Song, C.; Jing, P. Estimation of Pb and Cd Content in Soil Using Sentinel-2A Multispectral Images Based on Ensemble Learning. Remote Sens. 2023, 15, 2299. https://doi.org/10.3390/rs15092299
Yu H, Xie S, Liu P, Hua Z, Song C, Jing P. Estimation of Pb and Cd Content in Soil Using Sentinel-2A Multispectral Images Based on Ensemble Learning. Remote Sensing. 2023; 15(9):2299. https://doi.org/10.3390/rs15092299
Chicago/Turabian StyleYu, Haiyang, Saifei Xie, Peng Liu, Zhihua Hua, Caoyuan Song, and Peng Jing. 2023. "Estimation of Pb and Cd Content in Soil Using Sentinel-2A Multispectral Images Based on Ensemble Learning" Remote Sensing 15, no. 9: 2299. https://doi.org/10.3390/rs15092299
APA StyleYu, H., Xie, S., Liu, P., Hua, Z., Song, C., & Jing, P. (2023). Estimation of Pb and Cd Content in Soil Using Sentinel-2A Multispectral Images Based on Ensemble Learning. Remote Sensing, 15(9), 2299. https://doi.org/10.3390/rs15092299