Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Landsat Data
2.3. Climate and Anthropogenic Data
2.4. Water Extent Extraction
2.5. Changepoint Detection by BEAST
2.6. Quantitative Analysis of Driving Factors and SWA
3. Results
3.1. Accuracy Assessment of Water Extraction
3.2. Change Point of SWA
3.3. Spatiotemporal Patterns of SWA in HQSL
3.3.1. Long Term Water Body Inundation Frequency
3.3.2. Annual Variation of SWA
3.4. Variation of Surface Water Number
3.5. Attribution Analyses of SWA in HQSL
4. Discussion
4.1. Variations of SWA
4.2. Difference of SWA in Relation to Climate and Human Factors between ADR and AHDR
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Liu, X.; Tan, T.; Bai, Y.; Chou, L.-C. Restoration Performance of Regional Soil and Water Resources in China Based on Index of Coupling and Improved Assessment Tool. Alex. Eng. J. 2022, 61, 5677–5686. [Google Scholar] [CrossRef]
- Amprako, J.L. The United Nations World Water Development Report 2015. Future Food J. Food Agric. Soc. 2016, 4, 64–65. [Google Scholar]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global Carbon Dioxide Emissions from Inland Waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, E.F.; Roundy, J.K.; Troy, T.J.; Van Beek, L.; Bierkens, M.F.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.; et al. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth’s Terrestrial Water. Water Resour. Res. 2011, 47, 1–8. [Google Scholar] [CrossRef]
- German Advisory Council on Global Change. The Freshwater Crisis: Basic Elements. Ways Towards Sustain. Manag. Freshw. Resour. 1999, 3337, 45–113. [Google Scholar] [CrossRef]
- Postel, S.L.; Daily, G.C.; Ehrlich, P.R. Human appropriation of renewable fresh water. Science 1996, 271, 785–788. [Google Scholar] [CrossRef]
- Kellogg, W.A. Metropolitan Growth and the Local Role in Surface Water Resource Protection in the Lake Erie Basin. J. Great Lakes Res. 1997, 23, 270–285. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Zhou, Z.; Peng, H. Spatial Pattern of Scarcity of Water and It’s Shortage Types in China. Ecol. Econ. 2016, 32, 168–173. (In Chinese) [Google Scholar]
- Guo, B.; Huang, X.; Ma, K.; Gao, L.; Wang, Y. Discussion on Water Resources Value Accounting and Its Application. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 279–286. [Google Scholar] [CrossRef]
- Wang, H.; Hajnsek, I.; Kinzelbach, W. Monitoring Land Surface Changes and Water Deficit of Horqin Sandy Land in a Changing Climate. In Proceedings of the Remote Sensing and Hydrology, Jackson Hole, WY, USA, 27–30 September 2010; Volume 1, pp. 266–270. [Google Scholar]
- Khandelwal, A.; Karpatne, A.; Marlier, M.E.; Kim, J.; Lettenmaier, D.P.; Kumar, V. An Approach for Global Monitoring of Surface Water Extent Variations in Reservoirs Using MODIS Data. Remote Sens. Environ. 2017, 202, 113–128. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface Water Extent Dynamics from Three Decades of Seasonally Continuous Landsat Time Series at Subcontinental Scale in a Semi-Arid Region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Yao, F.; Wang, J.; Wang, C.; Crétaux, J.-F. Constructing Long-Term High-Frequency Time Series of Global Lake and Reservoir Areas Using Landsat Imagery. Remote Sens. Environ. 2019, 232, 111210. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Remote Sensing of Alpine Lake Water Environment Changes on the Tibetan Plateau and Surroundings: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Arsen, A.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A Lake Database to Monitor in the Near Real Time Water Level and Storage Variations from Remote Sensing Data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- MacFeeters, S.K. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Feature. Int. J. Remote Sens. 1995, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Wang, R.; Pan, L.; Niu, W.; Li, R.; Zhao, X.; Bian, X.; Yu, C.; Xia, H.; Chen, T. Monitoring the Spatiotemporal Dynamics of Surface Water Body of the Xiaolangdi Reservoir Using Landsat-5/7/8 Imagery and Google Earth Engine. Open Geosci. 2021, 13, 1290–1302. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in Water Surface Area during 1989–2017 in the Huai River Basin Using Landsat Data and Google Earth Engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, W.; Jiang, W.; Jia, K.; Rao, P.; Lv, J. Analysis of the Dynamic Changes of the Baiyangdian Lake Surface Based on a Complex Water Extraction Method. Water 2018, 10, 1616. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Ke, L.; Pan, H.; Zhan, S.; Liu, K.; Ma, R. Long-Term Surface Water Changes and Driving Cause in Xiong’an, China: From Dense Landsat Time Series Images and Synthetic Analysis. Sci. Bull. 2018, 63, 708–716. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous Monitoring of Lake Dynamics on the Mongolian Plateau Using All Available Landsat Imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.; Li, Y.; Yan, S.; Xu, Y. Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors during 1976–2015. Water 2017, 9, 749. [Google Scholar] [CrossRef] [Green Version]
- Sumiya, E.; Dorjsuren, B.; Yan, D.; Dorligjav, S.; Wang, H.; Enkhbold, A.; Weng, B.; Qin, T.; Wang, K.; Gerelmaa, T.; et al. Changes in Water Surface Area of the Lake in the Steppe Region of Mongolia: A Case Study of Ugii Nuur Lake, Central Mongolia. Water 2020, 12, 1470. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid Loss of Lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic Monitoring of Aeolian Desertification Based on Multiple Indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef]
- Démurger, S.; Fournier, M. Poverty and Firewood Consumption: A Case Study of Rural Households in Northern China. China Econ. Rev. 2011, 22, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Li, Y.; Luloff, A.E.; Dong, K.; Xiao, J. Effect of Agricultural Economic Growth on Sandy Desertification in Horqin Sandy Land. Ecol. Econ. 2015, 119, 53–63. [Google Scholar] [CrossRef]
- Chen, H.; Kang, M.; Cao, M. Study on Eco-Production Paradigm Regionalization of Agro-Pastoral Ecotone in Northern China. Bull. Soil Water Conserv. 2005, 25, 23–31. (In Chinese) [Google Scholar]
- Acharya, T.D.; Subedi, A.; Lee, D.H. Evaluation of Water Indices for Surface Water Extraction in a Landsat 8 Scene of Nepal. Sensors 2018, 18, 2580. [Google Scholar] [CrossRef] [Green Version]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent Trends of Open-Surface Water Body Area in the Contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Wulder, M.A.; Hu, T.; Bright, R.; Wu, Q.; Qin, H.; Li, Y.; Toman, E.; Mallick, B.; Zhang, X.; et al. Detecting Change-Point, Trend, and Seasonality in Satellite Time Series Data to Track Abrupt Changes and Nonlinear Dynamics: A Bayesian Ensemble Algorithm. Remote Sens. Environ. 2019, 232, 111181. [Google Scholar] [CrossRef]
- White, J.H.R.; Walsh, J.E.; Thoman, R.L. Using Bayesian Statistics to Detect Trends in Alaskan Precipitation. Int. J. Climatol. 2021, 41, 2045–2059. [Google Scholar] [CrossRef]
- Lai, J.; Zou, Y.; Zhang, J.; Peres-Neto, P. Rdacca.Hp: An R Package for Generalizing Hierarchical and Variation Partitioning in Multiple Regression and Canonical Analysis. bioRxiv 2021. [Google Scholar] [CrossRef]
- Olthof, I.; Rainville, T. Dynamic Surface Water Maps of Canada from 1984 to 2019 Landsat Satellite Imagery. Remote Sens. Environ. 2022, 279, 113121. [Google Scholar] [CrossRef]
- Somasundaram, D.; Zhang, F.; Ediriweera, S.; Wang, S.; Li, J.; Zhang, B. Spatial and Temporal Changes in Surface Water Area of Sri Lanka over a 30-Year Period. Remote Sens. 2020, 12, 3701. [Google Scholar] [CrossRef]
- Woodward, G.; Perkins, D.M.; Brown, L.E. Climate Change and Freshwater Ecosystems: Impacts across Multiple Levels of Organization. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2093–2106. [Google Scholar] [CrossRef] [Green Version]
- Pall, P.; Aina, T.; Stone, D.A.; Stott, P.A.; Nozawa, T.; Hilberts, A.G.; Lohmann, D.; Allen, M.R. Anthropogenic Greenhouse Gas Contribution to Flood Risk in England and Wales in Autumn 2000. Nature 2011, 470, 382–385. [Google Scholar] [CrossRef]
- Yuan, Y.; Zeng, G.; Liang, J.; Huang, L.; Hua, S.; Li, F.; Zhu, Y.; Wu, H.; Liu, J.; He, X.; et al. Variation of Water Level in Dongting Lake over a 50-Year Period: Implications for the Impacts of Anthropogenic and Climatic Factors. J. Hydrol. 2015, 525, 450–456. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global Water Resources Affected by Human Interventions and Climate Change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xiao, F.; Geng, X.; Hu, S.; Wang, Z. Spatiotemporal Variations in Surface Water and Its Significance to Desertification in China from 2000 to 2019. Catena 2022, 213, 106182. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Plate, E. Recent Flood Disasters in China. In Proceedings of the Institution of Civil Engineers-Water and Maritime Engineering; Thomas Telford Ltd.: London, UK, 2002; Volume 154, pp. 177–188. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, M.; Feng, W.; Zhang, Z.; Shen, Y.; Wu, D. Groundwater Depletion in the West Liaohe River Basin, China and Its Implications Revealed by GRACE and In Situ Measurements. Remote Sens. 2018, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Chen, D.; Xu, C.; Simelton, E. Trend of Estimated Actual Evapotranspiration over China during 1960–2002. J. Geophys. Res. Atmos. 2007, 112, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Slingo, J.M.; Rignot, E.; Reager, J.T.; Hakuba, M.Z.; Durack, P.J.; Worden, J.; Rocca, R. Earth’s Water Reservoirs in a Changing Climate. Proc. R. Soc. A 2020, 476, 0458–0466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Tang, H. Desertification in North China: Background, Anthropogenic Impacts and Failures in Combating It. Land Degrad. Dev. 2005, 16, 367–376. [Google Scholar] [CrossRef]
- Xu, K. Study on Water Cycle Regulation in West Liao River Basin and Ecosystem Stability of West Liao River Plain. Master’s Thesis, China Institute of Water Resources and Hydropower Research (IWHR), Beijing, China, 2013. [Google Scholar]
- Chen, Z. Reserch on Responce of Groundwater Depth Change and the Vegetation Ecosystem in the West Lian River Plain Based on RS/GIS. Ph.D. Thesis, JiLin University, Changchun, China, 2012. [Google Scholar]
- Hydrological Bureau of Inner Mongolia (HBIM). Inner Mongolia Water Resources Bulletin; Department of Water Resources of Inner Mongolia: Hohhot, China, 2013. [Google Scholar]
- Li, Z.; Yu, M.; Zhang, L.; Liu, B.; Long, W.; Wang, A.; Feng, B.; Huo, G. Investigation and Assessment of Groundwater Resources and Their Environmental Issues in the West Liaohe Plain; Geological Publishing House: Beijing, China, 2009. [Google Scholar]
- Dagvadorj, D. The Climate Change Policy and Measures in Mongolia. In Proceedings of the Consultative Meeting on Integration of Climate Change Adaptation into Sustainable Development in Mongolia, 2010; Institute for Global Environmental Strategies: Hayama, Japan, 2010; pp. 5–10. [Google Scholar]
- Du, Y. Analysis of Land Cover Change and Driving Factors in Horqin Sandy Land in Recent 20 Years. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2021. [Google Scholar]
- TongLiao Water Authority. TongLiao Water Resources Bulletin; TongLiao Water Authority: Tongliao, China, 2020. [Google Scholar]
- ChiFeng Water Authority. ChiFeng Water Resources Bulletin; ChiFeng Water Authority: Chifeng, China, 2020. [Google Scholar]
- Liu, H.; Yin, Y.; Piao, S.; Zhao, F.; Engels, M.; Ciais, P. Disappearing Lakes in Semiarid Northern China: Drivers and Environmental Impact. Environ. Sci. Technol. 2013, 47, 12107–12114. [Google Scholar] [CrossRef]
- Nawalany, M.; Sinicyn, G.; Grodzka-Lukaszewska, M.; Mirosław-Światek, D. Groundwater–Surface Water Interaction—Analytical Approach. Water 2020, 12, 1792. [Google Scholar] [CrossRef]
Data | Unit | Year | Source |
---|---|---|---|
Annual Temperature | °C | 1985–2020 | China Meteorological Data Service Center |
Annual Precipitation | mm | 1985–2020 | |
Evaporation | 0.1 mm | 1985–2020 | National Earth System Science Data Center |
Population | person | 1985–2020 | Regional statistical yearbooks |
Livestock number | Head | 1985–2020 | |
Effective irrigated area | Hm2 | 1985–2020 | |
Agriculture GDP | Chinese Yuan (CNY) | 1985–2020 |
Sentinel-2 MSI (10 m) | ||||
---|---|---|---|---|
Water Body Map (2020) | Water | No-Water | Total | User Accuracy (%) |
water | 836 | 25 | 861 | 97.10% |
No-water | 47 | 938 | 985 | 95.22% |
Total | 883 | 963 | 1846 | Overall Accuracy = 96.78% |
Producer Accuracy (%) | 94.68% | 97.40% | Kappa Coefficient = 0.93 |
Zone | Surface Water of HQSL (km2) | |||
---|---|---|---|---|
Seasonal (km2) | Permanent (km2) | Total | ||
25 ≤ WIF < 50 | 50 ≤ WIF < 75 | 75 ≤ WIF < 100 | ||
ADR | 41.31 | 92.26 | 162.06 | 295.63 |
AHDR | 333.78 | 143.95 | 192.50 | 670.23 |
Total | 495.84 | 236.21 | 233.81 | 965.86 |
1986 | 2000 | 2020 | Changes (1986–2000) | Changes (2000–2020) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area Class | Num. | Area | Num. | Area | Num. | Area | ΔNum. | ΔArea | ΔNum. | ΔArea | ΔNum. | ΔArea | ΔNum. | ΔArea |
(km2) | (km2) | (km2) | (km2) | (%) | (%) | (km2) | (%) | (%) | ||||||
ADR | 94 | 372.44 | 59 | 220.10 | 8 | 32.33 | 35 | 152.34 | 37% | 41% | 51 | 187.77 | 86% | 85% |
<1 km2 | 48 | 31.83 | 27 | 18.81 | 4 | 3.13 | 21 | 13.02 | 44% | 41% | 23 | 15.67 | 85% | 83% |
1–10 km2 | 37 | 87.22 | 24 | 56.43 | 3 | 11.61 | 13 | 30.79 | 35% | 35% | 21 | 44.79 | 88% | 79% |
>10 km2 | 9 | 253.39 | 8 | 144.92 | 1 | 17.59 | 1 | 108.47 | 11% | 43% | 7 | 127.31 | 88% | 88% |
AHDR | 267 | 696.18 | 128 | 288.65 | 106 | 205.21 | 139 | 407.53 | 52% | 59% | 22 | 83.39 | 17% | 29% |
<1 km2 | 120 | 82.03 | 59 | 41.17 | 50 | 34.16 | 61 | 40.86 | 51% | 50% | 9 | 6.94 | 15% | 17% |
1–10 km2 | 137 | 328.27 | 66 | 206.98 | 54 | 128.9 | 71 | 121.29 | 52% | 37% | 12 | 78 | 18% | 38% |
>10 km2 | 10 | 285.88 | 3 | 40.64 | 2 | 42.15 | 7 | 245.24 | 70% | 86% | 1 | 1.55 | 33% | 4% |
HQSL | 361 | 1068.62 | 187 | 508.07 | 114 | 237.54 | 174 | 560.55 | 48% | 52% | 73 | 270.46 | 39% | 53% |
<1 km2 | 168 | 113.86 | 86 | 60.09 | 54 | 37.29 | 82 | 53.77 | 49% | 47% | 32 | 22.71 | 37% | 38% |
1–10 km2 | 174 | 415.49 | 90 | 263.01 | 57 | 140.51 | 84 | 152.48 | 48% | 37% | 33 | 122.49 | 37% | 47% |
>10 km2 | 19 | 539.27 | 11 | 185.23 | 3 | 59.74 | 8 | 354.04 | 42% | 66% | 8 | 125.26 | 73% | 68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhao, X.; Zhao, Y.; Wang, R.; Lu, J.; Zhuang, H.; Bai, L. Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China. Remote Sens. 2023, 15, 1918. https://doi.org/10.3390/rs15071918
Chen X, Zhao X, Zhao Y, Wang R, Lu J, Zhuang H, Bai L. Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China. Remote Sensing. 2023; 15(7):1918. https://doi.org/10.3390/rs15071918
Chicago/Turabian StyleChen, Xueping, Xueyong Zhao, Yanming Zhao, Ruixiong Wang, Jiannan Lu, Haiyan Zhuang, and Liya Bai. 2023. "Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China" Remote Sensing 15, no. 7: 1918. https://doi.org/10.3390/rs15071918
APA StyleChen, X., Zhao, X., Zhao, Y., Wang, R., Lu, J., Zhuang, H., & Bai, L. (2023). Interaction of Climate Change and Anthropogenic Activity on the Spatiotemporal Changes of Surface Water Area in Horqin Sandy Land, China. Remote Sensing, 15(7), 1918. https://doi.org/10.3390/rs15071918