Disaster-Caused Power Outage Detection at Night Using VIIRS DNB Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Event Selection
2.2. VIIRS DNB Data
2.3. AOD Data
2.4. Cloud Mask Data
2.5. Surface Reflectance Data
2.6. Outages Data
2.7. MODTRAN
2.8. MT2009
3. Methodology
3.1. Low-Quality DNB Satellite Image Screening
3.2. Outlier Removing
3.3. Average Radiance Calculation
3.4. Atmospheric Correction
3.5. Lunar Correction
3.6. Power Outage Detection
3.7. Bias Calculation
3.8. Power Outage Spatial Distribution Detection
4. Results and Discussion
4.1. Outlier Discussion
4.2. Harris County Outages Degree
4.3. Outage Spatial Distribution Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanaka, H.; Nakagawa, H.; Ishino, K.; Yano, S.; Nawarathna, B.; Yasuda, H.; Watanabe, Y.; Hasegawa, K. Field investigation of disasters in sri lankan rivers caused by sumatra earthquake tsunami. Proc. Hydraul. Eng. 2006, 50, 577–582. [Google Scholar] [CrossRef]
- Ding, M.-T.; Cheng, Z.-L.; Wang, Q. Coupling mechanism of rural settlements and mountain disasters in the upper reaches of Min River. J. Mt. Sci. 2014, 11, 66–72. [Google Scholar] [CrossRef]
- Zhou, H.; Che, A.; Wang, L.; Wang, L. Investigation and mechanism analysis of disasters under Hokkaido Eastern Iburi earthquake. Geomat. Nat. Hazards Risk 2021, 12, 1–28. [Google Scholar] [CrossRef]
- Tsai, F.; Hwang, J.-H.; Chen, L.-C.; Lin, T.-H. Post-disaster assessment of landslides in southern Taiwan after 2009 Typhoon Morakot using remote sensing and spatial analysis. Nat. Hazards Earth Syst. Sci. 2010, 10, 2179–2190. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Qin, Q.; Zhao, J.; Ye, X.; Feng, X.; Qin, X.; Yang, X. Knowledge-Based Detection and Assessment of Damaged Roads Using Post-Disaster High-Resolution Remote Sensing Image. Remote Sens. 2015, 7, 4948–4967. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Sun, D.; Goldberg, M.D.; Sjoberg, B.; Santek, D.; Hoffman, J.; DeWeese, M.; Restrepo, P.; Lindsey, S.; Holloway, E. Automatic near real-time flood detection using Suomi-NPP/VIIRS data. Remote Sens. Environ. 2018, 204, 672–689. [Google Scholar] [CrossRef]
- Lu, L.; Guo, H.; Corbane, C.; Pesaresi, M.; Ehrlich, D. Rapid Damage Assessment of Buildings with VHR Optical Airborne Images in Yushu Earthquake. In Proceedings of the International Conference on Remote Sensing IEEE, Nanjing, China, 1–3 June 2012. [Google Scholar] [CrossRef]
- Brunner, D.; Bruzzone, L.; Lemoine, G. Change detection for earthquake damage assessment in built-up areas using high-resolution optical and SAR imagery. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium IEEE, Honolulu, HI, USA, 25–30 July 2010; pp. 3210–3213. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Ferrentino, E.; Marino, A.; Nunziata, F.; Migliaccio, M. A dual–polarimetric approach to earthquake damage assessment. Int. J. Remote Sens. 2018, 40, 197–217. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. Mapping city lights with nighttime data from the DMSP Operational Linescan System. Eng. Remote Sens. 1997, 63, 727–734. [Google Scholar]
- Zhang, J. Research on Regional Urban Economic Development by Nightlight-time Remote Sensing. arXiv arXiv:2105.10459, 2020.
- Li, Q.; Shi, X.; Wu, Q. Effects of China’s ecological restoration on economic development based on Night-Time Light and NDVI data. Environ. Sci. Pollut. Res. 2021, 28, 65716–65730. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Jiang, H.; Guo, W.; Cui, X.; Wu, L.; Wu, Z.; Wang, H. Regression Analysis and Comparison of Economic Parameters with Different Light Index Models under Various Constraints. Sensors 2021, 21, 7561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Samson, E.L.; Liu, Y. Population bias in nighttime lights imagery. Remote Sens. Lett. 2019, 10, 913–921. [Google Scholar] [CrossRef]
- Hall, O.; Bustos, M.F.A.; Olén, N.B.; Niedomysl, T. Population centroids of the world administrative units from nighttime lights 1992-2013. Sci. Data 2019, 6, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, H.; Jin, C.; Sun, W. Spatiotemporal Evolution of Population in Northeast China during 2012–2017: A Nighttime Light Approach. Complexity 2020, 2020, 3646145. [Google Scholar] [CrossRef]
- Sahoo, S.; Gupta, P.K.; Srivastav, S.K. Comparative analysis between VIIRS-DNB and DMSP-OLS night-time light data to estimate electric power consumption in Uttar Pradesh, India. Int. J. Remote Sens. 2019, 41, 2565–2580. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Chen, Z.; Liu, R.; Li, L.; Wu, J. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis. Appl. Energy 2016, 168, 523–533. [Google Scholar] [CrossRef]
- Levin, N.; Ali, S.; Crandall, D. Utilising remote sensing and big data to quantify conflict intensity: The Arab Spring as a case study. Appl. Geogr. 2018, 94, 1–17. [Google Scholar] [CrossRef]
- Liu, X.; Ning, X.; Wang, H.; Wang, C.; Zhang, H.; Meng, J. A Rapid and Automated Urban Boundary Extraction Method Based on Nighttime Light Data in China. Remote Sens. 2019, 11, 1126. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Hu, Y.; Sun, H.; Zhou, G. Study on Residents’ Quality of Life in the Context of Urban Shrinkage: Analysis Based on Subjective and Objective Data. J. Urban Plan. Dev. 2020, 146, 05020015. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Zheng, W.; Rong, Y.; Liu, W. Identification of urban shrinkage using NPP-VIIRS nighttime light data at the county level in China. Cities 2021, 118, 103373. [Google Scholar] [CrossRef]
- Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J. Mapping nighttime PM2.5 from VIIRS DNB using a linear mixed-effect model. Atmospheric Environ. 2018, 178, 214–222. [Google Scholar] [CrossRef]
- Wang, J.; Aegerter, C.; Xu, X.; Szykman, J.J. Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2. 5 air quality from space. Atmos. Environ. 2016, 124, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Song, Z.; Yang, H.; Yu, B.; Liu, H.; Che, T.; Chen, J.; Wu, J.; Shu, S.; Peng, X.; et al. Snow cover detection in mid-latitude mountainous and polar regions using nighttime light data. Remote Sens. Environ. 2021, 268, 112766. [Google Scholar] [CrossRef]
- Elvidge, C.; Ghosh, T.; Hsu, F.-C.; Zhizhin, M.; Bazilian, M. The Dimming of Lights in China during the COVID-19 Pandemic. Remote Sens. 2020, 12, 2851. [Google Scholar] [CrossRef]
- Lan, T.; Shao, G.; Tang, L.; Xu, Z.; Zhu, W.; Liu, L. Quantifying Spatiotemporal Changes in Human Activities Induced by COVID-19 Pandemic Using Daily Nighttime Light Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2740–2753. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.B.; Weiss, S.; Mills, S.; Hauss, B. Suomi NPP VIIRS day-night band on-orbit performance. J. Geophys. Res. Atmos. 2013, 118, 12705–12718. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, X.; Link, D.O.; Sun, C.; Chiang, K. NOAA-20 Visible Infrared Imaging Radiometer Suite day–night band on-orbit calibration and performance. J. Appl. Remote Sens. 2020, 14, 034516. [Google Scholar] [CrossRef]
- Hashitera, S.; Kohiyama, M.; Maki, N.; Fujita, H. Use of DMSP-OLS Images for Early Identification of Impacted Areas due to the 1999 Marmara Earthquake Disaster. In Proceedings of the 20th Asian Conference on Remote Sensing, Hong Kong, China, 22–25 November 1999; Volume 2. [Google Scholar]
- Cao, C.; Shao, X.; Uprety, S. Detecting Light Outages After Severe Storms Using the S-NPP/VIIRS Day/Night Band Radiances. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1582–1586. [Google Scholar] [CrossRef]
- Cole, T.A.; Wanik, D.W.; Molthan, A.L.; Román, M.O.; Griffin, R.E. Synergistic Use of Nighttime Satellite Data, Electric Utility Infrastructure, and Ambient Population to Improve Power Outage Detections in Urban Areas. Remote Sens. 2017, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Nie, G.; Deng, Y.; An, J.; Zhou, J.; Li, H. Rapid detection of earthquake damage areas using VIIRS nearly constant contrast night-time light data. Int. J. Remote Sens. 2018, 40, 2386–2409. [Google Scholar] [CrossRef]
- Sarkar, S. Rapid assessment of cyclone damage using NPP-VIIRS DNB and ancillary data. Nat. Hazards 2021, 106, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef] [Green Version]
- Wikipedia contributors. 2021 Texas Power Crisis. Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, January 15th 2022. Web. 17 January 2022. Available online: https://en.wikipedia.org/wiki/2021 (accessed on 1 October 2022).
- Aldhous, P.; Lee, S.; Hirji, Z. The Texas Winter Storm And Power Outages Killed Hundreds More People Than The State Says. BuzzFeed News. Available online: https://www.buzzfeednews.com/article/peteraldhous/texas-winter-storm-power-outage-death-toll. (accessed on 1 October 2022).
- Winter Storm Uri After-Action Review: Findings Report (PDF) (Report). City of Austin & Travis County. 4 November 2021. Archived (PDF) from the original on 5 November 2021. Available online: https://www.austintexas.gov/sites/default/files/files/HSEM/2021-Winter-Storm-Uri-AAR-Findings-Report.pdf (accessed on 1 October 2022).
- Sullivan, B.K.; Malick, N.S. 5 Million Americans Have Lost Power From Texas to North Dakota After Devastating Winter Storm. Time. Available online: https://time.com/5939633/texas-power-outage-blackouts/ (accessed on 1 October 2022).
- Shao, X.; Cao, C.; Zhang, B.; Qiu, S.; Elvidge, C.; Von Hendy, M. Radiometric calibration of DMSP-OLS sensor using VIIRS day/night band. In Earth Observing Missions and Sensors: Development, Implementation, and Characterization III; SPIE: Bellingham, WA, USA, 2014. [Google Scholar]
- Song, S.-K.; Choi, Y.-N.; Choi, Y.; Flynn, J.; Sadeghi, B. Characteristics of aerosol chemical components and their impacts on direct radiative forcing at urban and suburban locations in Southeast Texas. Atmospheric Environ. 2020, 246, 118151. [Google Scholar] [CrossRef]
- AERONET Site Information Database. Available online: https://aeronet.gsfc.nasa.gov/new_web/photo_db_v3/Univ_of_Houston.html (accessed on 1 October 2022).
- Platnick, S.; Meyer, K.; Wind, G.; Holz, R.E.; Amarasinghe, N.; Hubanks, P.A.; Veglio, P. The NASA MODIS-VIIRS continuity cloud optical properties products. Remote Sens. 2020, 13, 2. [Google Scholar] [CrossRef]
- Vermote, E.F.; Vermeulen, A. Atmospheric correction algorithm: Spectral reflectances (MOD09). ATBD Version 1999, 4, 1–107. [Google Scholar]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golder, S.M.; Chetwynd, J.H.; Hoke, M.L.; et al. MODTRAN 5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options: Update. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X; Shen, S.S., Lewis, P.L., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5806, pp. 662–668. ISBN 9780819457912. [Google Scholar]
- Miller, S.D.; Turner, R.E. A Dynamic Lunar Spectral Irradiance Data Set for NPOESS/VIIRS Day/Night Band Nighttime Environmental Applications. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2316–2329. [Google Scholar] [CrossRef]
- Schueler, C.F.; Thomas, F.L.; Steven, D.M. VIIRS constant spatial-resolution advantages. Int. J. Remote Sens. 2013, 34, 5761–5777. [Google Scholar] [CrossRef]
- Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. Development of a 2009 Stable Lights Product using DMSP-OLS data. Proc. Asia-Pacific Adv. Netw. 2010, 30, 114. [Google Scholar] [CrossRef]
- Yuan, X.; Jia, L.; Menenti, M.; Zhou, J.; Chen, Q. Filtering the NPP-VIIRS Nighttime Light Data for Improved Detection of Settlements in Africa. Remote Sens. 2019, 11, 3002. [Google Scholar] [CrossRef]
- Ryan, R.E.; Pagnutti, M.; Burch, K.; Leigh, L.; Ruggles, T.; Cao, C.; Aaron, D.; Blonski, S.; Helder, D. The Terra Vega Active Light Source: A First Step in a New Approach to Perform Nighttime Absolute Radiometric Calibrations and Early Results Calibrating the VIIRS DNB. Remote Sens. 2019, 11, 710. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanre, D.; Buis, J.P.; Setzer, A.; Smirnov, A. AERONET—A federated instrument network and data archive for aerosol characterisation. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Tan, F.; Lim, H.S.; Abdullah, K.; Holben, B. Estimation of aerosol optical depth at different wavelengths by multiple regression method. Environ. Sci. Pollut. Res. 2015, 23, 2735–2748. [Google Scholar] [CrossRef]
- Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. Anisotropic characteristic of artificial light at night–Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. 2019, 233, 111357. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Zhang, Q.; Li, D.; Chen, F.; Jia, M.; Wang, Y. Using radiant intensity to characterize the anisotropy of satellite-derived city light at night. Remote Sens. Environ. 2022, 271, 112920. [Google Scholar] [CrossRef]
Date (UTC) | Time (UTC) | Outliers’ Number | Min. Outlier Range (W·cm−2·sr−1) | Max. Outlier Range (W·cm−2·sr−1) |
---|---|---|---|---|
16 January 2021 | 07:34:18 | 2 | 6.48 × 10−10 | 5.52 × 10−7 |
16 January 2021 | 08:25:30 | 0 | / | / |
31 January 2021 | 07:56:18 | 0 | / | / |
16 February 2021 | 07:55:06 | 42 | 5.45 × 10−10~6.45 × 10−10 | 6.27 × 10−7~2.94 × 10−5 |
19 February 2021 | 08:39:19 | 28 | 4.35 × 10−10~6.29 × 10−10 | 5.96 × 10−7~4.28 × 10−6 |
20 February 2021 | 08:21:50 | 24 | 3.24 × 10−10~4.20 × 10−10 | 5.39 × 10−7~2.32 × 10−6 |
Relative Time Point of Disaster | Prior 30 Days | Prior 30 Days | Prior 15 Days | Post 1 Day | Post 4 Days | Post 5 Days |
---|---|---|---|---|---|---|
Date (UTC) | 16 January 2021 | 16 January 2021 | 31 January 2021 | 16 February 2021 | 19 February 2021 | 20 February 2021 |
Time (UTC) | 07:34:18 | 08:25:30 | 07:56:18 | 07:55:06 | 08:39:19 | 08:21:50 |
Corrected rad. (10−8·W·sr−1·cm−2) | 4.20692 | 4.45718 | 3.75163 | 3.16993 | 4.15621 | 3.71420 |
Outages Cal. (%) | \ | \ | \ | 28.48% | \ | \ |
Outages Sur. (%) | \ | \ | \ | 17.34% | 0.10% | 0.01% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, H.; Qiu, S.; Wang, Y.; Zhang, Y.; Liu, Z.; Karila, K.; Jia, J.; Chen, Y. Disaster-Caused Power Outage Detection at Night Using VIIRS DNB Images. Remote Sens. 2023, 15, 640. https://doi.org/10.3390/rs15030640
Cui H, Qiu S, Wang Y, Zhang Y, Liu Z, Karila K, Jia J, Chen Y. Disaster-Caused Power Outage Detection at Night Using VIIRS DNB Images. Remote Sensing. 2023; 15(3):640. https://doi.org/10.3390/rs15030640
Chicago/Turabian StyleCui, Haodong, Shi Qiu, Yicheng Wang, Yu Zhang, Zhaoyan Liu, Kirsi Karila, Jianxin Jia, and Yuwei Chen. 2023. "Disaster-Caused Power Outage Detection at Night Using VIIRS DNB Images" Remote Sensing 15, no. 3: 640. https://doi.org/10.3390/rs15030640
APA StyleCui, H., Qiu, S., Wang, Y., Zhang, Y., Liu, Z., Karila, K., Jia, J., & Chen, Y. (2023). Disaster-Caused Power Outage Detection at Night Using VIIRS DNB Images. Remote Sensing, 15(3), 640. https://doi.org/10.3390/rs15030640