Magnetic Fault-Tolerant Attitude Control with Dynamic Sensing for Remote Sensing CubeSats
Abstract
:1. Introduction
2. Brief Introduction of Magnetic Fault-Tolerant Attitude Control
3. Methodology of the Algorithm and Hardware
3.1. Geomagnetic Vector Calculation Algorithm (GVCA)
3.2. Fault-Tolerant Control Strategy and Control Law
3.3. Structure of ADCS
4. Results and Discussion
4.1. Simulation Experiment
4.1.1. Simulation Experiment Procedure
4.1.2. Performance of GVCA
4.1.3. Performance of ADCS
4.1.4. Additional Simulation Experiments
4.2. Space Environment Simulation Air-Floating Experiment
4.2.1. Laboratory Setup
4.2.2. Performance of Air-Floating Table
4.2.3. Performance of GVCA in Earth-Pointing Phase
4.2.4. Performance of ADCS in Earth-Pointing Phase
4.2.5. Performance in Despin Mode
4.2.6. Performance in Sun-Pointing Mode
4.2.7. Additional Laboratory Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawa, B.; Śniadek, P.; Walczak, R.; Dziuban, J. Nanosatellite Payload for Research on Seed Germination in a 3D Printed Micropot. Sensors 2023, 23, 1974. [Google Scholar] [CrossRef]
- Rashed, M.I.; Bang, H. A study of cognitive computing in nanosatellite constellations for synergic autonomy in CisLunar space. Adv. Space Res. 2023. [Google Scholar] [CrossRef]
- Thomas, M.; Trenti, M.; Sanna, A.; Campana, R.; Ghirlanda, G.; Řípa, J.; Burderi, L.; Fiore, F.; Evangelista, Y.; Amati, L. Localisation of gamma-ray bursts from the combined SpIRIT+ HERMES-TP/SP nano-satellite constellation. Publ. Astron. Soc. Aust. 2023, 40, e008. [Google Scholar]
- Ruf, C.S.; Gleason, S.; Jelenak, Z.; Katzberg, S.; Ridley, A.; Rose, R.; Scherrer, J.; Zavorotny, V. The CYGNSS nanosatellite constellation hurricane mission. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 214–216. [Google Scholar]
- Nakasuka, S.; Sako, N.; Sahara, H.; Nakamura, Y.; Eishima, T.; Komatsu, M. Evolution from education to practical use in University of Tokyo’s nano-satellite activities. Acta Astronaut. 2010, 66, 1099–1105. [Google Scholar] [CrossRef]
- Funase, R.; Inamori, T.; Ikari, S.; Ozaki, N.; Koizumi, H. Initial operation results of a 50kg-class deep space exploration micro-spacecraft PROCYON. In Proceedings of the 29th Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 8–13 August 2015. [Google Scholar]
- Nagel, G.W.; Novo, E.M.L.d.M.; Kampel, M. Nanosatellites applied to optical Earth observation: A review. Rev. Ambiente Água 2020, 15, 3. [Google Scholar] [CrossRef]
- Tamire, N.A.; Kim, H.-D. Effective Video Scene Analysis for a Nanosatellite Based on an Onboard Deep Learning Method. Remote Sens. 2023, 15, 2143. [Google Scholar] [CrossRef]
- Evans, D.; Merri, M. OPS-SAT: A ESA nanosatellite for accelerating innovation in satellite control. In Proceedings of the SpaceOps 2014 Conference, Pasadena, CA, USA, 5–9 May 2014; p. 1702. [Google Scholar]
- Bedington, R.; Bai, X.; Truong-Cao, E.; Tan, Y.C.; Durak, K.; Villar Zafra, A.; Grieve, J.A.; Oi, D.K.; Ling, A. Nanosatellite experiments to enable future space-based QKD missions. EPJ Quantum Technol. 2016, 3, 12. [Google Scholar] [CrossRef]
- McCarthy, S.; Crawford, S.; Wood, C.; Lewis, M.D.; Jolliff, J.K.; Martinolich, P.; Ladner, S.; Lawson, A.; Montes, M. Automated Atmospheric Correction of Nanosatellites Using Coincident Ocean Color Radiometer Data. J. Mar. Sci. Eng. 2023, 11, 660. [Google Scholar]
- Klyushnikov, V.Y. Status and prospects of developing commercial nano satellite constellations for Earth remote sensing. AIP Conf. Proc. 2021, 2318, 190008. [Google Scholar]
- Hakim, P.R.; Hasbi, W.; Syafrudin, A.H. ADCS requirements of Lapan-A3 satellite based on image geometry analysis. In Proceedings of the 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Yogyakarta, Indonesia, 13–14 November 2014; pp. 142–146. [Google Scholar]
- Foster, C.; Hallam, H.; Mason, J. Orbit determination and differential-drag control of Planet Labs CubeSat constellations. arXiv 2015, arXiv:1509.03270. [Google Scholar]
- Villela, T.; Costa, C.A.; Brandão, A.M.; Bueno, F.T.; Leonardi, R. Towards the thousandth CubeSat: A statistical overview. Int. J. Aerosp. Eng. 2019, 2019, 1–13. [Google Scholar]
- Poghosyan, A.; Golkar, A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Prog. Aerosp. Sci. 2017, 88, 59–83. [Google Scholar]
- Bedingfield, K.L.; Leach, R.D. Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment; National Aeronautics and Space Administration, Marshall Space Flight Center: Huntsville, AL, USA, 1996; Volume 1390.
- Dubock, P.; Spoto, F.; Simpson, J.; Spencer, D.; Schutte, E.; Sontag, H. The Envisat satellite and its integration. ESA Bull. 2001, 106, 26–45. [Google Scholar]
- Harland, D.M.; Lorenz, R.D. Attitude control system failures. In Space Systems Failures; Praxis: Gainesville, Georgia, 2005; pp. 211–226. [Google Scholar] [CrossRef]
- Tafazoli, M. A study of on-orbit spacecraft failures. Acta Astronaut. 2009, 64, 195–205. [Google Scholar] [CrossRef]
- Hasan, M.N.; Haris, M.; Qin, S. Fault-tolerant spacecraft attitude control: A critical assessment. Prog. Aerosp. Sci. 2022, 130, 100806. [Google Scholar]
- Yin, S.; Xiao, B.; Ding, S.X.; Zhou, D. A review on recent development of spacecraft attitude fault tolerant control system. IEEE Trans. Ind. Electron. 2016, 63, 3311–3320. [Google Scholar] [CrossRef]
- Ennaciri, T.; Abbassi, A.E.; Mrani, N.; Foshi, J. Attitude Control of LEO Satellite via LQR Based on Reaction Wheels Versus Magnetorquer. In Proceedings of the International Conference on Artificial Intelligence and Smart Environment, Errachidia, Morocco, 24–26 November 2022; pp. 264–269. [Google Scholar]
- Yang, Y. Spacecraft attitude and reaction wheel desaturation combined control method. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 286–295. [Google Scholar] [CrossRef]
- Steyn, W. A Multimode Attitude Determination and Control System for SUNSAT. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, December 1995. [Google Scholar]
- Broadfoot, R.M.; Miles, D.M.; Holley, W.; Howarth, A.D. In situ calibration of the Swarm-Echo magnetometers. Geosci. Instrum. Methods Data Syst. 2022, 11, 323–333. [Google Scholar] [CrossRef]
- Montalvo, C.J.; Givens, A.; Cobar, M.J.; Sherman, W.; Franklin, C.; Patrick, W.M.; Godfrey, A. Guidance, Navigation and Control Subsystem Design for ABEX Satellite. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022; p. 1588. [Google Scholar]
- Xing, Y.; Low, K.; Pham, M. Distributed Model Predictive Control of satellite attitude using hybrid reaction wheels and magnetic actuators. In Proceedings of the 2012 IEEE Symposium on Industrial Electronics and Applications, Bandung, Indonesia, 23–26 September 2012; pp. 230–235. [Google Scholar]
- Miles, D.M.; Howarth, A.D.; Enno, G.A. In situ calibration of offsetting magnetometer feedback transients on the Cassiope spacecraft. Geosci. Instrum. Methods Data Syst. 2019, 8, 187–195. [Google Scholar] [CrossRef]
- Finley, M.G.; Broadfoot, R.M.; Shekhar, S.; Miles, D.M. Identification and Removal of Reaction Wheel Interference From In-Situ Magnetic Field Data Using Multichannel Singular Spectrum Analysis. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031020. [Google Scholar] [CrossRef]
- Finley, M.; Miles, D.; Shekhar, S.; Steele, K. Beyond Bandpass: Time-Varying Interference Mitigation for In-Situ Magnetic Field Data using Multichannel Singular Spectrum Analysis. In Proceedings of the AGU Fall Meeting Abstracts, Chicago, IL, USA, 12–16 December 2022; p. SH32D-1782. [Google Scholar]
- Colagrossi, A.; Lavagna, M. Fault tolerant attitude and orbit determination system for small satellite platforms. Aerospace 2022, 9, 46. [Google Scholar] [CrossRef]
Items | Values | |
---|---|---|
Orbital Elements | Orbital Altitude | 506,741.4 m |
Orbital Eccentricity | 0.00002 | |
Orbital Inclination | 96.62° | |
Right Ascension of Ascending Node | 271.44° | |
Argument of Perigee | 265.34° | |
True Anomaly | 274.21° | |
Coordinated Universal Time | 25 June 2023 08:00:00 | |
Attitude (Quaternion) | [0.2928, −0.0252, −0.7952, −0.5304] | |
Angular Velocity | [−3.85, 5.11, −6.19] °/s | |
Inertia Matrix | kg/m2 |
Items | Values | ||||
---|---|---|---|---|---|
Samples | 1 | 2 | 3 | ||
Initial Conditions | Orbital Elements | Orbital Altitude/m | 506,741.4 | 489,397.5 | 553,976.2 |
Orbital Eccentricity | 0.00002 | 0.00012 | 0.00007 | ||
Orbital Inclination/° | 96.62 | 87.39 | 63.78 | ||
Right Ascension of Ascending Node/° | 271.44 | 138.72 | 67.12 | ||
Argument of Perigee/° | 265.34 | 89.23 | 189.37 | ||
True Anomaly/° | 274.21 | 67.34 | 173.29 | ||
Coordinated Universal Time | 25 June 2023 08:00:00 | 12 July 2023 13:10:03 | 13 August 2023 21:43:52 | ||
Attitude (Quaternion) | [0.2928, −0.0252, −0.7952, −0.5304] | [0.7204, −0.2366, 0.6517, 0.0193] | [0.7261, 0.4465, 0.2217, 0.4735] | ||
Angular Velocity/°/s | [−3.85, 5.11, −6.19] | [5.85, −3.52, 7.27] | [2.08, −9.11,3.26] | ||
Inertia Matrix/kg/m2 | [0.1323, −0.0208, −0.0115; −0.0208, 0.1550, −0.0122; −0.0115, −0.0122, 0.1760] | [0.1512, 0.0128, −0.0249; 0.0128, 0.1198, 0.0239; −0.0249, 0.0239, 0.0963] | [0.2178, −0.0532, −0.0701; −0.0532, 0.1923, 0.0386; −0.0701, 0.0386, 0.2732] | ||
Results | Despin Mode | Convergence Angular Velocity/°/s | 0.20 | 0.15 | 0.50 |
Control Time Consumption/s | 2200 | 6045 | 6657 | ||
Magnetic field sensing accuracy/Gauss(3σ) | [0.31,0.28,0.26] | [0.26,0.25,0.25] | [0.37,0.40,0.36] | ||
Sun-pointing Mode | Error Angle/°(3σ) | 0.0508 | 0.0507 | 0.0484 | |
Magnetic field sensing accuracy/Gauss(3σ) | [0.03,0.01,0.04] | [0.02,0.03,0.03] | [0.03,0.03,0.04] | ||
Earth-pointing Mode | Error Euler Angle/°(3σ) | [0.0053,0.0072,0.0111] | [0.0097,0.0067,0.0116] | [0.0044,0.0126,0.0052] | |
Magnetic field sensing accuracy/Gauss(3σ) | [0.08,0.03,0.05] | [0.04,0.01,0.03] | [0.03,0.02,0.02] |
Samples | Phase | Initial Conditions | Results | ||||
---|---|---|---|---|---|---|---|
Euler Angle (ZYX)/° | Angular Velocity/°/s | Attitude Accuracy/° | Despin Time Consumption/s | Angular Velocity Accuracy/°/s | Magnetic Field Sensing Accuracy /Gauss | ||
1 | Despin | [44.89, 1.44, −90.68] | [−0.0215, −2.1226, −0.0239] | \ | 160.1 | ±0.15 | [0.14, 0.04] |
Sun-pointing | [−153.25, −0.23, −90.34] | [−0.0024, −0.2656, −0.0029] | 0.5089 | \ | ±0.0015 | [0.02, −0.07] | |
Earth-pointing | [177.49, 0.03, −89.98] | [0.0005, 0.1050, 0.0005] | ±0.0155 | \ | ±0.0027 | [0.07, −0.02] | |
2 | Despin | [160.11, 0.24, −89.85] | [−0.0132, −1.3760, −0.0142] | \ | 69.2 | ±0.08 | [0.10, 0.09] |
Sun-pointing | [80.93, 1.30, −90.17] | [−0.0054, −0.6255, −0.0073] | 0.6249 | \ | ±0.0076 | [0.08, −0.10] | |
Earth-pointing | [−178.79, −0.02, −90.02] | [−0.0049, −0.4912, −0.0049] | ±0.0133 | \ | ±0.0027 | [0.07, −0.12] | |
3 | Despin | [111.78, 0.95, −89.87] | [−0.0229, −2.2446, −0.0249] | \ | 295.5 | ±0.02 | [0.08, 0.17] |
Sun-pointing | [93.94, 1.17, −90.02] | [0.0039, 0.2241, 0.0103] | 0.8023 | \ | ±0.0185 | [0.04, −0.09] | |
Earth-pointing | [−145.65, −0.26, −90.45] | [−0.0005, −0.0645, 0.0001] | ±0.0267 | \ | ±0.0033 | [−0.02, −0.08] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Cui, Z.; Chen, X.; Liu, X.; Xing, F.; You, Z. Magnetic Fault-Tolerant Attitude Control with Dynamic Sensing for Remote Sensing CubeSats. Remote Sens. 2023, 15, 4858. https://doi.org/10.3390/rs15194858
Fan S, Cui Z, Chen X, Liu X, Xing F, You Z. Magnetic Fault-Tolerant Attitude Control with Dynamic Sensing for Remote Sensing CubeSats. Remote Sensing. 2023; 15(19):4858. https://doi.org/10.3390/rs15194858
Chicago/Turabian StyleFan, Shaoyan, Ziang Cui, Xuedi Chen, Xinyuan Liu, Fei Xing, and Zheng You. 2023. "Magnetic Fault-Tolerant Attitude Control with Dynamic Sensing for Remote Sensing CubeSats" Remote Sensing 15, no. 19: 4858. https://doi.org/10.3390/rs15194858
APA StyleFan, S., Cui, Z., Chen, X., Liu, X., Xing, F., & You, Z. (2023). Magnetic Fault-Tolerant Attitude Control with Dynamic Sensing for Remote Sensing CubeSats. Remote Sensing, 15(19), 4858. https://doi.org/10.3390/rs15194858