Three-Dimensional Sparse SAR Imaging with Generalized Lq Regularization
Abstract
:1. Introduction
2. Array SAR Observation Model and Observation-Matrix-Based Sparse SAR Reconstruction Model
2.1. Array SAR Observation Model
2.2. The Observation-Matrix-Based Sparse SAR Reconstruction Model
2.3. Sparse Reconstruction Combining MM and Regularization
3. The Sparse Reconstruction Method Combining MM and Regularization
3.1. The Sparse Reconstruction Method Combining MM and Regularization
3.2. Sparse Reconstruction Method Combining MM and Regularization
Algorithm 1 The procedure of MM- |
Input: 3D complex image data ; Error parameter ; Step size ; Maximum number of iterations ; Reconstruction image . While and do End While Output: Sparse reconstruction image without PI reservation ; Sparse reconstruction image with PI preserved . |
Algorithm 2 The procedure of MM- |
Input: 3D complex image data ; Error parameter ; Step size ; Maximum number of iterations ; Reconstruction image . While and do End While Output: Sparse reconstruction image without PI reservation ; Sparse reconstruction image with PI preserved . |
3.3. Sparse Reconstruction Method Combining MM and Regularization
Algorithm 3 The procedure of MM- |
Input: 3D complex image data ; Error parameter ; Step size ; Maximum number of iterations ; Reconstruction image . While and do End While Output: Sparse reconstruction image without PI reservation ; Sparse reconstruction image with PI preserved . |
3.4. Generalized MM- () Method
Algorithm 4 The generalized proximal regularization operator |
Input: q; ; . If Else Iterate on End If Output: . |
Algorithm 5 The procedure of GMM- |
Input: 3D complex image data ; Error parameter ; Step size ; Maximum number of iterations ; Reconstruction image . While and do End While Output: Sparse reconstruction image without PI reservation ; Sparse reconstruction image with PI preserved . |
4. Results and Analysis
4.1. Combat-Vehicle Model
4.2. 3D Aircraft Imaging with AWGN
4.3. Experiments Based on Ground-Based Array SAR Data
4.4. Real SAR Data of Complex Scenes
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cumming, I.G.; Wong, F.H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House 2004, 1, 108–110. [Google Scholar]
- Moses, R.L.; Potter, L.C.; Çetin, M. Wide angle SAR Imaging. In Proceedings of the International Society for Optics and Photonics in Defense and Security, Orlando, FL, USA, 2 September 2004; pp. 164–175. [Google Scholar]
- Wang, Z.M.; Guo, Q.J.; Tian, X.Z. 3-D millimeter-wave imaging using MIMO RMA with range compensation. IEEE Trans. Microwave Theory Tech. 2019, 67, 1157–1166. [Google Scholar] [CrossRef]
- Gui, S.; Li, J.; Pi, Y. Security imaging for multi-target screening based on adaptive scene segmentation with terahertz radar. IEEE Sens. J. 2019, 19, 2675–2684. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhan, X.; Zhang, T.; Zhou, L.; Shi, J.; Wei, S. An RCS Measurement Method Using Sparse Imaging Based 3D SAR Complex Image. IEEE Antennas Wirel. Propag. Lett. 2021. [Google Scholar] [CrossRef]
- Gao, J.K.; Qin, Y.L.; Deng, B. A novel method for 3-D millimeter-wave holographic reconstruction based on frequency interferometry techniques. IEEE Trans. Microwave Theory Tech. 2017, 66, 1579–1596. [Google Scholar] [CrossRef]
- Salvetti, F.; Martorella, M.; Giusti, E. Multi-view three-dimensional interferometric inverse synthetic aperture radar. IEEE Trans. Aerosp. Electron. Syst. 2018, 55, 718–733. [Google Scholar] [CrossRef]
- Xin, W.; Lu, Z.; Weihua, G.; Pcng, F. Active Millimeter-Wave Near-Field Cylindrical Scanning Three-Dimensional Imaging System. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 7–11 May 2018; pp. 1–3. [Google Scholar]
- Bamler, R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Xiang, J.; Dong, Y.; Yang, Y. FISTA-Net: Learning A Fast Iterative Shrinkage Thresholding Network for Inverse Problems in Imaging. IEEE Trans. Med. Imaging 2021, 99, 1329–1339. [Google Scholar] [CrossRef]
- Daubechies, I.; Defriese, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 2004, 57, 1413–1457. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, B.; Zhou, G.; Zhong, L.; Wu, Y. Sparse SAR Imaging and Quantitative Evaluation Based on Nonconvex and TV Regularization. Remote Sens. 2021, 13, 1643. [Google Scholar] [CrossRef]
- Ao, D.; Wang, R.; Hu, C.; Li, Y. A Sparse SAR Imaging Method Based on Multiple Measurement Vectors Model. Remote Sens. 2017, 9, 297. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, Y.; Zhang, Y.; Huang, Y.; Yang, J. A Sparse Denoising-Based Super-Resolution Method for Scanning Radar Imaging. Remote Sens. 2021, 13, 2768. [Google Scholar] [CrossRef]
- Çetin, M.; Karl, W.C. Feature–enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. 2001, 10, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Blumensath, T.; Mulgrew, B.; Davies, M. Fast encoding of synthetic aperture radar raw data using compressed sensing. In Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, 26–29 August 2007. [Google Scholar]
- Rilling, G.; Davies, M.; Mulgrew, B. Compressed sensing based compression of SAR raw data. In Proceedings of the SPARS’09-Signal Processing with Adaptive Sparse Structured Representations, Saint-Malo, France, 6–9 April 2009; pp. 1–6. [Google Scholar]
- Zhu, X.; Bamler, R. Super–resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 247–258. [Google Scholar] [CrossRef]
- Hu, C.; Wang, L.; Zhu, D.; Loffeld, O. Inverse Synthetic Aperture Radar Sparse Imaging Exploiting the Group Dictionary Learning. Remote Sens. 2021, 13, 2812. [Google Scholar] [CrossRef]
- Tan, X.; Roberts, W.; Li, J.; Stoica, P. Sparse Learning via Iterative Minimization with Application to MIMO Radar Imaging. IEEE Trans. Signal Process. 2011, 59, 1088–1101. [Google Scholar] [CrossRef]
- Austin, C.D.; Ertin, E.; Moses, R.L. Sparse Signal Methods for 3–D Radar Imaging. IEEE J. Sel. Top. Signal Process. 2011, 5, 408–423. [Google Scholar] [CrossRef]
- Zhu, X.; Bamler, R. Tomographic SAR Inversion by L1-Norm Regularization-the Compressive Sensing Approach. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3839–3846. [Google Scholar] [CrossRef] [Green Version]
- Zuo, W.; Meng, D.; Zhang, L.; Feng, X.; Zhang, D. Title of Presentation. A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 217–224. [Google Scholar]
- Glentis, G.O.; Zhao, K.; Jakobsson, A.; Li, J. Non–Parametric High–Resolution SAR Imaging. IEEE Trans. Signal Process. 2013, 61, 1614–1624. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, Y.R. A comparative study of compressed sensing approaches for 3-D synthetic aperture radar image reconstruction. Digit. Signal Process. 2014, 32, 24–33. [Google Scholar] [CrossRef]
- Sun, Y.; Babu, P.; Palomar, D.P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning. IEEE Trans. Signal Process. 2017, 65, 794–816. [Google Scholar] [CrossRef]
- Fang, J.; Xu, Z.; Zhang, B.; Hong, W.; Wu, Y. Fast Compressed Sensing SAR Imaging Based on Approximated Observation. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2014, 7, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Zhang, B.; Zhu, X. Azimuth-range decouple-based L1 regularization method for wide ScanSAR imaging via extended chirp scaling. J. Appl. Remote Sens. 2017, 11, 015007. [Google Scholar] [CrossRef]
- Bi, H.; Bi, G.; Zhang, B.; Hong, W. Complex-Image-Based Sparse SAR Imaging and Its Equivalence. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5006–5014. [Google Scholar] [CrossRef]
- Xu, Z. L1/2 Regularization: A Thresholding Representation Theory and a Fast Solver. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1013–1027. [Google Scholar] [PubMed]
- Tian, B.; Zhang, X.; Li, L.; Pu, L.; Pu, L.; Shi, J.; Wei, S. Fast Bayesian Compressed Sensing Algorithm via Relevance Vector Machine for LASAR 3D Imaging. Remote Sens. 2021, 13, 1751. [Google Scholar] [CrossRef]
- Werness, S.A.S.; Carrara, W.G.; Joyce, L.S.; Franczak, D.B. Moving target imaging algorithm for SAR data. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 57–67. [Google Scholar] [CrossRef]
- Wei, S.; Zhou, Z.; Wang, M.; Wei, J.; Liu, S.; Shi, J.; Zhang, X.; Fan, F. 3DRIED: A High-Resolution 3-D Millimeter-Wave Radar Dataset Dedicated to Imaging and Evaluation. Remote Sens. 2021, 13, 3366. [Google Scholar] [CrossRef]
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 32.2816 | 56.8821 | 58.1102 | 55.5013 | 57.2132 |
75% | 28.7322 | 55.8019 | 56.2296 | 52.3123 | 56.1083 |
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 2.1957 | 0.1123 | 0.0616 | 0.1231 | 0.0976 |
75% | 2.9766 | 0.1345 | 0.0867 | 0.1401 | 0.1205 |
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 25.3125 | 55.1235 | 56.4503 | 53.5276 | 55.1685 |
75% | 24.2586 | 54.2167 | 55.5226 | 53.0124 | 55.0645 |
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 2.9295 | 0.1037 | 0.0853 | 0.1069 | 0.0988 |
75% | 3.1164 | 0.1091 | 0.0866 | 0.1098 | 0.1084 |
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 33.0913 | 70.6076 | 72.0131 | 68.7402 | 71.2652 |
75% | 31.5164 | 69.1123 | 71.0673 | 67.6913 | 70.5451 |
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 2.6935 | 0.0398 | 0.0209 | 0.0419 | 0.0236 |
75% | 2.9392 | 0.0403 | 0.0211 | 0.0422 | 0.0254 |
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 20.1336 | 54.0925 | 55.3405 | 53.9772 | 54.2199 |
75% | 19.0196 | 53.2565 | 54.1911 | 52.9027 | 53.2659 |
Sampling Rates | MF | MM- | MM- | MM- | GMM- |
---|---|---|---|---|---|
100% | 4.2374 | 0.1309 | 0.1025 | 0.1367 | 0.1171 |
75% | 4.7267 | 0.1360 | 0.1161 | 0.1405 | 0.1295 |
Method | Time (s) | TBR (dB) | ENT |
---|---|---|---|
IST | 48,019.97 | 56.8645 | 0.0995 |
MM- with PI | 1.73 | 55.1236 | 0.1037 |
MM- without PI | 55.0183 | 0.1056 | |
MM- with PI | 6.16 | 56.4521 | 0.0853 |
MM- without PI | 56.2314 | 0.0855 | |
MM- with PI | 2.75 | 53.5286 | 0.1069 |
MM- without PI | 53.4768 | 0.1088 | |
GMM- with PI | 6.63 | 55.1743 | 0.0988 |
GMM- without PI | 55.1651 | 0.0991 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, Z.; Zhan, X.; Fu, Y.; Zhou, L. Three-Dimensional Sparse SAR Imaging with Generalized Lq Regularization. Remote Sens. 2022, 14, 288. https://doi.org/10.3390/rs14020288
Wang Y, He Z, Zhan X, Fu Y, Zhou L. Three-Dimensional Sparse SAR Imaging with Generalized Lq Regularization. Remote Sensing. 2022; 14(2):288. https://doi.org/10.3390/rs14020288
Chicago/Turabian StyleWang, Yangyang, Zhiming He, Xu Zhan, Yuanhua Fu, and Liming Zhou. 2022. "Three-Dimensional Sparse SAR Imaging with Generalized Lq Regularization" Remote Sensing 14, no. 2: 288. https://doi.org/10.3390/rs14020288
APA StyleWang, Y., He, Z., Zhan, X., Fu, Y., & Zhou, L. (2022). Three-Dimensional Sparse SAR Imaging with Generalized Lq Regularization. Remote Sensing, 14(2), 288. https://doi.org/10.3390/rs14020288