Geomorphic Evolution of Radial Sand Ridges in the South Yellow Sea Observed from Satellites
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Dataset
3.2. Methods
3.2.1. Shoreline Extraction and Analysis
3.2.2. Waterline Extraction and Analysis
3.2.3. Sand Ridge Line Extraction and Analysis
4. Results
4.1. Shoreline Evolution
4.2. Evolution Analysis of Exposed Tidal Flat
4.2.1. Area Change of Exposed Tidal Flats
4.2.2. Stability Analysis of Exposed Tidal Flats
4.3. Analysis of Geomorphic Evolution of Sand Ridge
4.3.1. Spatial Distribution Characteristics of RSRs
4.3.2. Movement Trend of Sand Ridges
5. Discussion
5.1. Causes and Future Trend of the Shoreline
5.2. Driving Forces for the Southeastward Movement of the RSRs
5.3. Limitations for the Geomorphic Evolutionary Analysis of the Radial Sand Ridges
6. Conclusions
- (1)
- The coastline has been advancing towards the sea from the Sheyang to Tanglugang estuary. The maximum advance rate was 348.76 m/a, and the average was 136.98 m/a. The section from Wanggang to Xiaoyang Port advances the most to the sea, and 1999–2009 is the period with the fastest advancing rate. The large-scale reclamation in Jiangsu province is the main driving force;
- (2)
- The exposed tidal flat area has decreased sharply, and the offshore sandbars have moved significantly to the southeast. Over the past 40 years, the exposed tidal flats have decreased by 1484 km2 including the reclaimed area of 1414 km2 and have showed a trend of erosion in the north around Xiyang channel and deposition in the southeast around the Gaoni and Jiangjiasha areas;
- (3)
- RSRs have been spread in a fan-shaped pattern over the seabed of the Southern Yellow Sea in the past 40 years with pronounced differences between the northern and southern channel−sand ridges. From 1979 to 2019, the sand ridge lines showed a trend of gradually moving southeast, the moving distance is nearly 4 km, and the direction is southeast (135°), with an average annual movement of 100 m. The enhancement of the northern rotating tidal wave system may be one of the leading factors.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Zhang, Y.; Zou, X.; Zhu, D.; Piper, D. The sand ridge field of the South Yellow Sea: Origin by river–sea interaction. Mar. Geol. 2012, 291–294, 132–146. [Google Scholar] [CrossRef]
- Jian, L.; Saito, Y.; Kong, X.; Hong, W.; Xiang, L.; Wen, C.; Nakashima, R. Sedimentary record of environmental evolution off the Yangtze River estuary, East China Sea, during the last 13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years. Quat. Sci. Rev. 2010, 29, 2424–2438. [Google Scholar]
- UNESCO World Heritage Centre. Available online: https://whc.unesco.org/en/sessions/43COM/ (accessed on 23 July 2019).
- Chen, W.T.; Zhang, D.; Hong-Yi, L.I.; Han, F.; Geography, D.O.; University, N.N. Quantitative Assessment of Reclamation Intensity and Development Potential in the Onshore Coast of Radial Sandbank. Adv. Mar. Sci. 2017, 35, 295–304. [Google Scholar]
- Shen, F.; Zhou, Y.; Li, J.; He, Q.; Verhoef, W. Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast. Cont. Shelf Res. 2013, 69, 52–61. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, J.; Saito, Y.; Zhang, Z.; Chu, H.; Hu, G. Coastal erosion as a major sediment supplier to continental shelves: Example from the abandoned Old Huanghe (Yellow River) delta. Cont. Shelf Res. 2014, 82, 43–59. [Google Scholar] [CrossRef]
- Su, M.; Yao, P.; Wang, Z.B.; Zhang, C.K.; Stive, M.J.F. Exploratory morphodynamic modeling of the evolution of the Jiangsu coast, China, since 1855: Contributions of old Yellow River-derived sediment. Mar. Geol. 2016, 390, 306–320. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Jin, S.; Sun, C.; Wei, X. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites. ISPRS J. Photogramm. 2019, 150, 27–43. [Google Scholar] [CrossRef]
- Dyer, K.R.; Huntley, D.A. The origin, classification and modelling of sand banks and ridges. Cont. Shelf Res. 1999, 19, 1285–1330. [Google Scholar] [CrossRef]
- Ren, M. Comprehensive Investigation of Coastal Zone and Tidal Flat Resources, Jiangsu Province; Ocean Press: Beijing, China, 1986. (In Chinese) [Google Scholar]
- Zhang, R. Evolution of Sand Bodies in Jiangsu Offshore Zone and Prospect of ‘Tiaozini’ Advancing to Land; Ocean Press: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Zhang, C. Comprehensive Investigation and Assessment Report of Jiangsu Offshore; China Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Wang, Y.P.; Gao, S.; Jia, J.; Thompson, C.; Gao, J.; Yang, Y. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Mar. Geol. 2012, 291–294, 147–161. [Google Scholar] [CrossRef]
- Gong, Z.; Jin, C.; Zhang, C.; Zhou, Z.; Zhang, Q.; Li, H. Temporal and spatial morphological variations along a cross-shore intertidal profile, Jiangsu, China. Cont. Shelf Res. 2017, 144, 1–9. [Google Scholar] [CrossRef]
- Choi, J.K.; Ryu, J.H.; Lee, Y.K.; Yoo, H.R.; Han, J.W.; Chang, H.K. Quantitative estimation of intertidal sediment characteristics using remote sensing and GIS. Estuar. Coast. Shelf Sci. 2010, 88, 125–134. [Google Scholar] [CrossRef]
- Xu, F.; Tao, J.; Zhou, Z.; Coco, G.; Zhang, C. Mechanisms underlying the regional morphological differences between the northern and southern radial sand ridges along the Jiangsu Coast, China. Mar. Geol. 2016, 371, 1–17. [Google Scholar] [CrossRef]
- Tao, J.; Wang, Z.B.; Zhou, Z.; Xu, F.; Stive, M.J.F. A Morphodynamic Modeling Study on the Formation of the Large-cale Radial Sand Ridges in the Southern Yellow Sea. J. Geophys. Res. Earth Surf. 2019, 124, 1742–1761. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Huang, H.; Wang, Y.; Fagherazzi, S. On the morphology of radial sand ridges. Earth Surf. Process. Landf. 2020, 45, 2613–2630. [Google Scholar] [CrossRef]
- Zhou, Z.; Mick, V.D.W.; Jagers, B.; Coco, G. Modelling the role of self-weight consolidation on the morphodynamics of accretional mudflats. Environ. Modell. Softw. 2016, 76, 167–181. [Google Scholar] [CrossRef]
- Randazzo, G.; Italiano, F.; Micallef, A.; Tomasello, A.; Cassetti, F.P.; Zammit, A.; D’Amico, S.; Saliba, O.; Cascio, M.; Cavallaro, F.; et al. WebGIS Implementation for Dynamic Mapping and Visualization of Coastal Geospatial Data: A Case Study of BESS Project. Appl. Sci. 2021, 11, 8233. [Google Scholar] [CrossRef]
- Bezzi, A.; Casagrande, G.; Fracaros, S.; Martinucci, D.; Pillon, S.; Sponza, S.; Bratus, A.; Fattor, F.; Fontolan, G. Geomorphological Changes of a Migrating Sandbank: Multidecadal Analysis as a Tool for Managing Conflicts in Coastal Use. Water 2021, 13, 3416. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Laignel, B. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef] [Green Version]
- Murray, N.J.; Phinn, S.R.; Clemens, R.S.; Roelfsema, C.M.; Fuller, R.A. Continental Scale Mapping of Tidal Flats across East Asia Using the Landsat Archive. Remote Sens. 2012, 4, 3417–3426. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Mason, D.C.; Scott, T.R.; Dance, S.L. Remote sensing of intertidal morphological change in Morecambe Bay, U.K., between 1991 and 2007. Estuar. Coast. Shelf Sci. 2010, 87, 487–496. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Kim, C.H.; Lee, Y.K.; Won, J.S.; Chun, S.S.; Lee, S. Detecting the intertidal morphologic change using satellite data. Estuar. Coast. Shelf Sci. 2008, 78, 623–632. [Google Scholar] [CrossRef]
- Liu, Y.X.; Li, M.C.; Zhou, M.X.; Kang, Y.; Mao, L. Quantitative Analysis of the Waterline Method for Topographical Mapping of Tidal Flats: A Case Study in the Dongsha Sandbank, China. Remote Sens. 2013, 5, 6138–6158. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Guo, H.; Yan, Y.; Wang, Q.; Bo, L. A simple waterline approach for tidelands using multi-temporal satellite images: A case study in the Yangtze Delta. Estuar. Coast. Shelf Sci. 2008, 77, 134–142. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, D.; You, K.; Pan, S.; Zhu, X.; Zou, X.; Zhang, Y. Evolution of radiative sand ridge field of the South Yellow Sea and its sedimentary characteristics. Sci. China Ser. D 1999, 42, 97–112. [Google Scholar] [CrossRef]
- Yao, P.; Su, M.; Wang, Z.; Rijn, L.V.; Zhang, C.; Chen, Y.; Stive, M. Experiment inspired numerical modeling of sediment concentration over sand–silt mixtures. Coast. Eng. 2015, 105, 75–89. [Google Scholar] [CrossRef]
- Liu, T.; Shi, X.; Chaoxin, L.I.; Yang, G. The reverse sediment transport trend between abandoned Huanghe River (Yellow River) Delta and radial sand ridges along Jiangsu coastline of China—An evidence from grain size analysis. Acta Oceanol. Sin. 2012, 31, 83–91. [Google Scholar] [CrossRef]
- Zhang, C. Tidal current-induced formation-storm-induced change-tidal current-induced recovery-Interpretation of depositional dynamics of formation and evolution of radial sand ridges on the Yellow Sea seafloor. Sci. China Ser. D Earth Sci. 1999, 1, 1–12. [Google Scholar] [CrossRef]
- Kang, Y.; Ding, X.; Xu, F.; Zhang, C.; Ge, X. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method. Estuar. Coast. Shelf Sci. 2017, 190, 11–22. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; U.S. Geological Survey: Reston, VA, USA, 2009; pp. 1278–2008. [Google Scholar]
- Ryu, J.H.; Won, J.S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650–665. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, J.; Pan, D.; Tao, B.; Zhu, Q. A regional remote sensing algorithm for total suspended matter in the East China Sea. Remote Sens. Environ. 2012, 124, 819–831. [Google Scholar] [CrossRef]
- Yuill, R.S. The Standard Deviational Ellipse; An Updated Tool for Spatial Description. Geogr. Ann. Ser. B Hum. Geogr. 1971, 53, 28–39. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, J.; Lin, K.; Ding, X.; Yuan, R.; Kang, Y. Spatial layout of reclamation of coastal tidal flats in Jiangsu Province. J. Hohai Univ. 2011, 39, 206–212. (In Chinese) [Google Scholar]
- The State Council of the People’s Republic of China. Available online: http://www.gov.cn/zhengce/content/2018-07/25/content_5309058.htm (accessed on 25 July 2010).
- Zhang, R. Coastline changes in Jiangsu province during historical period. In Proceedings of Quaternary Coastline Symposium, China, 1982; China Quaternary Research Association and Chinese Society of Oceanography, Ed.; China Ocean Press: Beijing, China, 1985; pp. 132–145. (In Chinese) [Google Scholar]
- Wu, H.; Gu, J.; Zhu, P. Winter counter-wind transport in the inner southwestern Yellow Sea. J. Geophys. Res. Ocean 2018, 123, 411–436. [Google Scholar] [CrossRef]
- Gao, S.; Collins, M.B. Holocene sedimentary systems on continental shelves. Mar. Geol. 2014, 352, 268–294. [Google Scholar] [CrossRef]
- Chen, K.F.; Wang, Y.H.; Lu, P.D.; Zheng, J.H. Effects of Coastline Changes on Tide System of Yellow Sea off Jiangsu Coast, China. China Ocean Eng. 2009, 23, 741–750. [Google Scholar]
- Kang, Y.; Xia, F.; Ding, X.; Zhang, C.; Cheng, L.; Ge, X.; Glass, J. Coastal evolution of Yancheng, northern Jiangsu, China since the mid-Holocene based on the Landsat MSS imagery. J. Geogr. Sci. 2013, 23, 915–931. [Google Scholar] [CrossRef]
- Ni, W.; Wang, Y.; Zou, X.; Zhang, J.; Gao, J. Sediment dynamics in an offshore tidal channel in the southern Yellow Sea. Int. J. Sediment Res. 2014, 29, 246–259. [Google Scholar] [CrossRef]
Object Extraction | Date | Satellite | Sensor | Tide Level/m (CNHD 1985) | ||||
---|---|---|---|---|---|---|---|---|
DFG | DSG | DDG | TYG | YKG | ||||
waterline | 1978/05/11 | Landsat-2 | MSS | −1.98 | −2.03 | −3.12 | −2.25 | −1.94 |
waterline | 1978/08/09 | Landsat-2 | MSS | −2.37 | −2.00 | −2.89 | −1.79 | −2.40 |
waterline | 1978/08/10 | Landsat-2 | MSS | −2.32 | −1.86 | −2.45 | −1.42 | −2.40 |
waterline | 1978/09/05 | Landsat-2 | MSS | −1.49 | −2.07 | −3.30 | −2.73 | −1.49 |
shoreline | 1979/09/09 | Landsat-2 | MSS | −2.17 | −2.1 | −2.33 | −1.32 | −1.75 |
waterline/sand ridge line | 1979/09/10 | Landsat-2 | MSS | −2.45 | −2.36 | −2.30 | −2.04 | −2.24 |
waterline | 1980/09/30 | Landsat-2 | MSS | −2.05 | −1.34 | −2.99 | −2.29 | −1.9 |
waterline | 1980/10/28 | Landsat-2 | MSS | −1.85 | −1.55 | −3.26 | −2.62 | −1.82 |
waterline | 1980/12/12 | Landsat-2 | MSS | −1.89 | −1.54 | −2.08 | −1.42 | −1.83 |
waterline | 1988/03/08 | Landsat-5 | TM | −2.09 | −1.31 | −2.60 | −1.89 | −1.85 |
waterline | 1988/06/05 | Landsat-5 | TM | −2.27 | −1.81 | −2.82 | −1.84 | −2.56 |
waterline | 1989/03/27 | Landsat-5 | TM | −2.34 | −1.20 | −2.94 | −2.10 | −2.05 |
shoreline/sand ridge line | 1989/12/01 | Landsat-5 | TM | −1.49 | −1.06 | −1.46 | −1.20 | −2.25 |
waterline | 1990/04/15 | Landsat-5 | TM | −1.91 | −1.15 | −3.32 | −2.77 | −1.89 |
waterline | 1990/07/13 | Landsat-5 | TM | −2.65 | −2.06 | −3.21 | −1.91 | −2.81 |
waterline | 1998/01/31 | Landsat-5 | TM | −1.47 | −3.02 | −3.06 | −3.14 | −1.63 |
shoreline/sand ridge line | 1999/02/19 | Landsat-5 | TM | 0.95 | −2.59 | −2.33 | −3.93 | −1.53 |
waterline | 2000/03/09 | Landsat-5 | TM | −2.02 | −1.36 | −2.66 | −1.97 | −1.34 |
waterline | 2000/03/26 | Landsat-7 | ETM+ | −2.22 | −1.21 | −2.57 | −1.80 | −2.21 |
waterline | 2000/04/10 | Landsat-5 | TM | −2.42 | −1.65 | −3.05 | −2.02 | −2.53 |
waterline | 2000/06/06 | Landsat-5 | TM | −2.32 | −1.89 | −2.53 | −1.49 | −2.33 |
waterline | 2000/09/18 | Landsat-7 | ETM+ | −1.59 | −1.72 | −2.78 | −2.25 | −1.51 |
waterline | 2000/10/04 | Landsat-7 | ETM+ | −1.39 | −0.61 | −2.56 | −2.50 | −1.2 |
waterline | 2008/02/12 | Landsat-5 | TM | −1.92 | −1.58 | −2.89 | −2.12 | −2.35 |
waterline | 2008/05/11 | Landsat-5 | TM | −2.34 | −2.36 | −2.53 | −1.33 | −2.02 |
shoreline/waterline | 2009/04/28 | Landsat-5 | TM | −2.25 | −0.83 | −2.57 | −1.90 | −1.52 |
sand ridge line | 2009/05/29 | Landsat-7 | ETM+ | −2.39 | −1.85 | −1.57 | −1.50 | −2.42 |
shoreline | 2009/06/14 | Landsat-7 | ETM+ | −2.11 | −1.7 | −1.36 | −1.51 | −2.23 |
waterline | 2009/08/26 | Landsat-5 | ETM+ | −2.18 | −1.51 | −1.09 | −2.26 | −1.89 |
waterline | 2010/12/26 | Landsat-7 | TM | −1.65 | −1.77 | −1.46 | −1.88 | −2.2 |
waterline | 2010/12/27 | Landsat-7 | TM | −1.02 | −1.74 | −1.42 | −1.25 | −2.17 |
waterline | 2018/03/23 | HJ-1 | CCD | −2.52 | −2.25 | −2.97 | −1.70 | −2.79 |
waterline | 2018/07/18 | Landsat-7 | ETM+ | −2.21 | −2.24 | −3.25 | −2.84 | −2.73 |
waterline | 2019/03/13 | HJ-1 | WFV | −2.43 | −2.14 | −2.73 | −2.89 | −2.42 |
shoreline | 2019/03/15 | GF-1 | CCD | −1.73 | −1.7 | −2.06 | −1.88 | −1.57 |
sand ridge line | 2019/05/21 | HJ-1 | CCD | 0.02 | −1.09 | −2.43 | −2.45 | −1.46 |
waterline | 2019/06/08 | GF-1 | WFV | −0.66 | −1.18 | −2.82 | −2.93 | −1.92 |
waterline | 2019/08/21 | Landsat-8 | OLI | −0.72 | −1.42 | −2.62 | −2.51 | −1.56 |
Sand Ridges | Length (km) | Direction (°) | Sand Ridges | Length (km) | Direction (°) |
---|---|---|---|---|---|
Gaoni−Dongsha | 96 | 350 | Tiaozini−Jiangjiasha | 135 | 71 |
Macaiheng | 70 | 10 | Hetunsha | 38 | 80 |
Maozhusha | 111 | 26 | Tangyangsha | 60 | 95 |
Waimaozhusha | 185 | 18 | Lengjiasha | 51 | 105 |
Jiangjiabeisha | 156 | 27 | Yaosha−Wulongsha | 54 | 120 |
Time | Semi-Major Axis (km) | Semi-Minor Axis (km) | Area (km2) |
---|---|---|---|
1979 | 83.01 | 45.99 | 11,993.42 |
1989 | 80.95 | 45.95 | 11,684.94 |
1999 | 82.18 | 44.08 | 11,333.23 |
2009 | 82.73 | 44.56 | 11,580.01 |
2019 | 81.95 | 44.50 | 11,452.49 |
Time | Angle (°) | Distance (m) | Speed (m/a) |
---|---|---|---|
1979–1989 | 157.47 | 1035.65 | 103.57 |
1989–1999 | 125.80 | 1009.03 | 100.90 |
1999–2009 | 124.69 | 606.01 | 60.60 |
2009–2019 | 130.54 | 1354.39 | 135.44 |
1979–2019 | 135.31 | 3899.62 | 97.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; He, J.; Wang, B.; Lei, J.; Wang, Z.; Ding, X. Geomorphic Evolution of Radial Sand Ridges in the South Yellow Sea Observed from Satellites. Remote Sens. 2022, 14, 287. https://doi.org/10.3390/rs14020287
Kang Y, He J, Wang B, Lei J, Wang Z, Ding X. Geomorphic Evolution of Radial Sand Ridges in the South Yellow Sea Observed from Satellites. Remote Sensing. 2022; 14(2):287. https://doi.org/10.3390/rs14020287
Chicago/Turabian StyleKang, Yanyan, Jinyan He, Bin Wang, Jun Lei, Zihe Wang, and Xianrong Ding. 2022. "Geomorphic Evolution of Radial Sand Ridges in the South Yellow Sea Observed from Satellites" Remote Sensing 14, no. 2: 287. https://doi.org/10.3390/rs14020287
APA StyleKang, Y., He, J., Wang, B., Lei, J., Wang, Z., & Ding, X. (2022). Geomorphic Evolution of Radial Sand Ridges in the South Yellow Sea Observed from Satellites. Remote Sensing, 14(2), 287. https://doi.org/10.3390/rs14020287