Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance
Abstract
:1. Introduction
2. Models and Methods
2.1. Absorption Decomposition Algorithms (ADAs)
2.2. Semi-Analytical Algorithms (SAA)
2.3. Statistical Indicators
2.4. Datasets
3. Results
3.1. Performance Evaluation of Semi-Analytical Algorithms in the Retrieval of
3.2. Performance Evaluation of ADAs in the Retrieval of Absorption Subcomponents from Measured
3.3. Hybrid Inversion Models for Deriving Absorption Subcomponents from Remote Sensing Reflectance
3.3.1. Performance Evaluation of Hybrid Models in Deriving
3.3.2. Performance Evaluation of Hybrid Models in Deriving
4. Discussion
4.1. Effect of Different Datasets on Model Performance
4.2. Applicability of Existing ADAs in Partitioning
4.3. Effect of SAA Methodology in Deriving from
4.4. Validity of the Derived Absorption Subcompnents and Statistical Indicator Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, G.; Stramski, D. A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components. J. Geophys. Res. Ocean. 2013, 118, 2155–2174. [Google Scholar] [CrossRef]
- Twardowski, M.S.; Rottgers, R.; Stramski, D. The Absorption Coefficient, An Overview. In Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation; International Ocean Color Coordinating Group (IOCCG) Report 2018; Bedford Institute of Oceanography: Dartmouth, NS, Canada, 2018; Chapter 1; pp. 1–15. [Google Scholar]
- WET Labs. ac Meter Protocol Document; WET Labs, Inc.: Philomath, Oregon, 2011. [Google Scholar]
- Freeman, S. Calibration and Data Processing of ACS Device; NASA GSFC: Greenbelt, MD, USA, 2012.
- Dana, D.R.; Maffione, R.A. A New Hyperspectral Spherical-Cavity Absorption Meter. In Proceedings of the AGU Ocean Sciences Meeting, Honolulu, HI, USA, 20–24 February 2006; pp. 1–13. [Google Scholar]
- Röttgers, R.; Häse, C.; Doerffer, R. Determination of the particulate absorption of microalgae using a point-source integrating-cavity absorption meter: Verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence. Limnol. Oceanogr. Methods 2007, 5. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Werdell, P.J.; McKinna, L.I.W.; Boss, E.; Ackleson, S.G.; Craig, S.E.; Gregg, W.W.; Lee, Z.; Maritorena, S.; Roesler, C.S.; Rousseaux, C.S.; et al. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing. Prog. Oceanogr. 2018, 160, 186–212. [Google Scholar] [CrossRef] [PubMed]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef]
- Garver, S.A.; Siegel, D.A. Inherent optical property inversion of ocean color spectra and its biogeochemcial interpretation 1. Time series from the Sargasso Sea. J. Geophys. Res. 1997, 102, 18607–18625. [Google Scholar] [CrossRef]
- Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a semianalytical ocean color model for global-scale application. Appl. Opt. 2002, 41, 2705–2714. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef]
- Lee, Z.; Lubac, B.; Werdell, J.; Arnone, R. An Update of the Quasi-Analytical Algorithm (QAA-V5). Available online: https://www.researchgate.net/publication/228416418_An_update_of_the_quasi-analytical_algorithm_QAA_v5 (accessed on 22 March 2021).
- Lee, Z. Update of the Quasi-Analytical Algorithm (QAA_v6). Available online: http://www.ioccg.org/groups/Software_OCA/QAA_v6_2014209.pdf (accessed on 22 March 2021).
- Schofield, O.; Bergmann, T.; Oliver, M.J.; Irwin, A.; Kirkpatrick, G.; Bissett, W.P.; Moline, M.A.; Orrico, C. Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Cao, W.; Wang, G.; Hu, S. Approach for determining the contributions of phytoplankton, colored organic material, and nonalgal particles to the total spectral absorption in marine waters. Appl. Opt. 2013, 52, 4249–4257. [Google Scholar] [CrossRef]
- Zheng, G.; Stramski, D.; Digiacomo, P.M. A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay. J. Geophys. Res. Ocean. 2015, 120, 2601–2621. [Google Scholar] [CrossRef]
- Ciotti, A.M.; Bricaud, A. Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water-leaving radiances at SeaWiFS channels in a continental shelf region off Brazil. Limnol. Oceanogr. Methods 2006, 4, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Oubelkheir, K.; Claustre, H.; Bricaud, A.; Babin, M. Partitioning total spectral absorption in phytoplankton and colored detrital material contributions. Limnol. Oceanogr. Methods 2007, 5, 384–395. [Google Scholar] [CrossRef]
- Zhang, X.; Huot, Y.; Bricaud, A.; Sosik, H.M. Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter. Appl. Opt. 2015, 54, 5805–5816. [Google Scholar] [CrossRef]
- Roesler, C.S.; Perry, M.J.; Carder, K.L. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Ocean. 1989, 34, 1510–1523. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Digiacomo, P.M. Remote sensing of chlorophyll—A in coastal waters based on the light absorption coefficient of phytoplankton. Remote Sens. Environ. 2017, 201, 331–341. [Google Scholar] [CrossRef]
- Roesler, C.S.; Perry, M.J. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J. Geophys. Res. 1995, 100, 22767. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, G.; Samset, O.; Granskog, L.; Sakshaug, E. In vivo absorption characteristics in 10 classes of bloom-forming phytoplankton—Taxonomic characteristics and responses to photoadaptation by means of discriminant and HPLC analysis. Mar. Ecol. Prog. Ser. 1994, 105, 149–158. [Google Scholar] [CrossRef]
- Uitz, J.; Huot, Y.; Bruyant, F.; Babin, M.; Claustre, H. Relating phytoplankton photophysiological properties to community structure on large scales. Limnol. Oceanogr. 2008, 53, 614–630. [Google Scholar]
- Forsythe, G.E. Computer Methods for Mathematical Computations, 1st ed.; Prentice Hall: Hoboken, NJ, USA, 1977; pp. 1–259. [Google Scholar]
- Brent, R.P. Algorithms for Minimization without Derivatives; Dover Books on Mathematics; Dover Publications: Mineola, NY, USA, 2013; ISBN 9780486143682. [Google Scholar]
- Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Gavin, H.P. The Levenburg-Marqurdt Algorithm for Nonlinear Least Squares Curve-Fitting Problems; Duke University: Durham, NC, USA, 2019; pp. 1–19. [Google Scholar]
- Bricaud, A.; Babin, M.; Morel, A.; Claustre, H. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization phytoplankton. J. Geophys. Res. 1995, 100, 13321–13332. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications; Lee, Z.-P., Ed.; Reports of the International Ocean Colour Coordinating Group; IOCCG: Dartmouth, NS, Canada, 2006; Volume 5. [Google Scholar]
- Mobley, C.D.; Sundman, L.K. Hydrolight 5.2 Users’ Guide. Available online: https://www.sequoiasci.com/wp-content/uploads/2013/07/HE52UsersGuide.pdf (accessed on 22 March 2021).
- Valente, A.; Sathyendranath, S.; Brotas, V.; Groom, S.; Grant, M.; Taberner, M.; Antoine, D.; Arnone, R.; Balch, W.M.; Barker, K.; et al. A compilation of global bio-optical in situ data for ocean-colour satellite applications. Earth Syst. Sci. Data 2016, 8, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Nechad, B.; Ruddick, K.; Schroeder, T.; Oubelkheir, K.; Blondeau-Patissier, D.; Cherukuru, N.; Brando, V.; Dekker, A.; Clementson, L.; Banks, A.C.; et al. CoastColour Round Robin data sets: A database to evaluate the performance of algorithms for the retrieval of water quality parameters in coastal waters. Earth Syst. Sci. Data 2015, 7, 319–348. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, S.P.; Sarma, Y.V.B.; Kurten, B.; Ouhssain, M.; Jones, B.H. An optical algorithm to estimate downwelling diffuse attenuation coefficient in the red sea. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7174–7182. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- Bricaud, A.; Ciotti, A.M.; Gentili, B. Spatial-temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009). Glob. Biogeochem. Cycles 2012, 26. [Google Scholar] [CrossRef]
- Stockley, N.D.; Röttgers, R.; McKee, D.; Lefering, I.; Sullivan, J.M.; Twardowski, M.S. Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9. Opt. Express 2017, 25, A1139–A1153. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C.R. Ocean color chlorophyll algorighms for SeaWiFS. J. Geophys. Res. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Twardowski, M.S.; Boss, E.; Sullivan, J.M.; Donaghay, P.L. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Mar. Chem. 2004, 89, 69–88. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Müller, D.; Brockmann, C.; Deschamps, P.Y.; Devred, E.; Doerffer, R.; Fomferra, N.; Franz, B.; Grant, M.; et al. The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sens. Environ. 2015, 162, 271–294. [Google Scholar] [CrossRef] [Green Version]
Model Name | Output Variable | Reference | ||||
---|---|---|---|---|---|---|
Other Outputs | ||||||
CB | X | - | - | X | —size parameter | [18] |
SCM | X | - | - | X | - | [1] |
GSCM | X | X | X | X | [17] | |
Lin | X | X | X | X | [16] | |
OSI | X | X | X | X | , , | [15] |
Zhang | X | - | - | X | Pico, micro and Nano size classes; Chlorophyll concentration | [20] |
Dataset | No. of Stations | Wavelengths (nm) | ||
---|---|---|---|---|
IOCCG | 500 | 400–800 nm; 10 nm spacing | 0.005–0.418 | 0.003–2.637 |
Global bio-optical dataset (GB) | 860 | 412, 443, 490, 510, 555, 670 | 0.002–1.479 | 0.003–1.801 |
CCRR | 348 | 411, 443, 488, 510, 555, 665 | 0.017–1.457 | 0.029–0.835 |
Red Sea | 5000 | 350–800 nm with 5 nm spacing | 0.002–0.025 | 0.000–0.146 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolluru, S.; Tiwari, S.P.; Gedam, S.S. Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance. Remote Sens. 2021, 13, 1726. https://doi.org/10.3390/rs13091726
Kolluru S, Tiwari SP, Gedam SS. Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance. Remote Sensing. 2021; 13(9):1726. https://doi.org/10.3390/rs13091726
Chicago/Turabian StyleKolluru, Srinivas, Surya Prakash Tiwari, and Shirishkumar S. Gedam. 2021. "Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance" Remote Sensing 13, no. 9: 1726. https://doi.org/10.3390/rs13091726
APA StyleKolluru, S., Tiwari, S. P., & Gedam, S. S. (2021). Hybrid Inversion Algorithms for Retrieval of Absorption Subcomponents from Ocean Colour Remote Sensing Reflectance. Remote Sensing, 13(9), 1726. https://doi.org/10.3390/rs13091726