Editorial for Underwater 3D Recording & Modelling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrafiotis, P.; Skarlatos, D.; Georgopoulos, A.; Karantzalos, K. DepthLearn: Learning to Correct the Refraction on Point Clouds Derived from Aerial Imagery for Accurate Dense Shallow Water Bathymetry Based on SVMs-Fusion with LiDAR Point Clouds. Remote Sens. 2019, 11, 2225. [Google Scholar] [CrossRef] [Green Version]
- Prado, E.; Rodríguez-Basalo, A.; Cobo, A.; Ríos, P.; Sánchez, F. 3D Fine-scale Terrain Variables from Underwater Photogrammetry: A New Approach to Benthic Microhabitat Modeling in a Circalittoral Rocky Shelf. Remote Sens. 2020, 12, 2466. [Google Scholar] [CrossRef]
- Pavoni, G.; Corsini, M.; Callieri, M.; Fiameni, G.; Edwards, C.; Cignoni, P. On Improving the Training of Models for the Semantic Segmentation of Benthic Communities from Orthographic Imagery. Remote Sens. 2020, 12, 3106. [Google Scholar] [CrossRef]
- Istenič, K.; Gracias, N.; Arnaubec, A.; Escartín, J.; Garcia, R. Scale Accuracy Evaluation of Image-Based 3D Reconstruction Strategies Using Laser Photogrammetry. Remote Sens. 2019, 11, 2093. [Google Scholar] [CrossRef] [Green Version]
- Nocerino, E.; Menna, F.; Gruen, A.; Troyer, M.; Capra, A.; Castagnetti, C.; Rossi, P.; Brooks, A.; Schmitt, R.; Holbrook, S. Coral Reef Monitoring by Scuba Divers Using Underwater Photogrammetry and Geodetic Surveying. Remote Sens. 2020, 12, 3036. [Google Scholar] [CrossRef]
- Fukunaga, A.; Burns, J.; Pascoe, K.; Kosaki, R. Associations between Benthic Cover and Habitat Complexity Metrics Obtained from 3D Reconstruction of Coral Reefs at Different Resolutions. Remote Sens. 2020, 12, 1011. [Google Scholar] [CrossRef] [Green Version]
- Kahmen, O.; Rofallski, R.; Luhmann, T. Impact of Stereo Camera Calibration to Object Accuracy in Multimedia Photogrammetry. Remote Sens. 2020, 12, 2057. [Google Scholar] [CrossRef]
- Helmholz, P.; Lichti, D. Investigation of Chromatic Aberration and Its Influence on the Processing of Underwater Imagery. Remote Sens. 2020, 12, 3002. [Google Scholar] [CrossRef]
- Jhan, J.; Rau, J.; Chou, C. Underwater 3D Rigid Object Tracking and 6-DOF Estimation: A Case Study of Giant Steel Pipe Scale Model Underwater Installation. Remote Sens. 2020, 12, 2600. [Google Scholar] [CrossRef]
- Čejka, J.; Bruno, F.; Skarlatos, D.; Liarokapis, F. Detecting Square Markers in Underwater Environments. Remote Sens. 2019, 11, 459. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skarlatos, D.; Bruno, F.; Menna, F.; Nocerino, E. Editorial for Underwater 3D Recording & Modelling. Remote Sens. 2021, 13, 665. https://doi.org/10.3390/rs13040665
Skarlatos D, Bruno F, Menna F, Nocerino E. Editorial for Underwater 3D Recording & Modelling. Remote Sensing. 2021; 13(4):665. https://doi.org/10.3390/rs13040665
Chicago/Turabian StyleSkarlatos, Dimitrios, Fabio Bruno, Fabio Menna, and Erica Nocerino. 2021. "Editorial for Underwater 3D Recording & Modelling" Remote Sensing 13, no. 4: 665. https://doi.org/10.3390/rs13040665
APA StyleSkarlatos, D., Bruno, F., Menna, F., & Nocerino, E. (2021). Editorial for Underwater 3D Recording & Modelling. Remote Sensing, 13(4), 665. https://doi.org/10.3390/rs13040665