Localization of the Chang’e-5 Lander Using Radio-Tracking and Image-Based Methods
Abstract
:1. Introduction
2. Methodology
2.1. Radio-Tracking Method
2.2. Image-Based Method
3. Results
- (1)
- The location differences (converted to the distances on the lunar surface) between the benchmark result (Chang’e-2 DOM) and 12 h, 24 h and 48 h radio-tracking results and other image-based localization results are less than 100 m;
- (2)
- The location difference between our image-based localization results (Chang’e-2 DOM vs. LROC NAC DOM) is less than 30 m, and the location difference between our image-based localization result (Chang’e-2 DOM) and the localization result of the LROC team is also less than 30 m;
- (3)
- Among the radio-tracking results, the location differences of 24 h and 12 h results with respect to the 48h results are less than 100 m.
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BCRS | Barycentric Celestial Reference System |
DE | Development Ephemeris |
DEM | Digital Elevation Model |
DOM | Digital Orthophoto Map |
EO | Exterior Orientation |
IAU | International Astronomical Union |
IO | Interior Orientation |
JPL | Jet Propulsion Laboratory |
LBF | Lunar Body-Fixed coordinate system |
LROC | Lunar Reconnaissance Orbiter Camera |
LRRR | Lunar Laser Ranging Retroreflector |
NAC | Narrow Angle Camera |
OCS | Orbit Coordinate System |
RSM | Rigorous Sensor Model |
TDB | Barycentric Dynamical Time |
TT | Terrestrial Time |
UXB | Unified X-band |
VLBI | Very Long Baseline Interferometry |
References
- China Daily. Chang’e 5 Lands on Moon, Starts Surface Operations. Available online: https://www.chinadaily.com.cn/a/202012/02/WS5fc6cd7ea31024ad0ba992ca.html (accessed on 2 December 2020).
- China Daily. Chang’e 5 Returns Home with Lunar Samples. Available online: https://global.chinadaily.com.cn/a/202012/17/WS5fda4ed3a31024ad0ba9c3d5.html (accessed on 17 December 2020).
- Guinn, J.R.; Ely, T.A. Preliminary results of Mars Exploration Rover in situ radio navigation. In Proceedings of the 14th Space Flight Mechanics Meeting, AAS/AIAA, Maui, HI, USA, 8–12 February 2004. Paper AAS 04-270. [Google Scholar]
- Li, R.; Squyres, S.W.; Arvidson, R.E.; Archinal, B.A.; Bell, J.; Cheng, Y.; Xu, F. Initial results of rover localization and topographic mapping for the 2003 Mars Exploration Rover mission. Photogramm. Eng. Remote Sens. 2005, 71, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Tang, G.; Cao, J. Precision orbit determination of CE-1 lunar satellite. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 212–217. [Google Scholar]
- Xia, J.; Ren, X.; Liu, J.; Mou, L.L.; Li, C.L. Positioning of Lunar High-Precision Control Points on Chang’e-1/2 Original Images. J. Jilin Univ. 2012, 42, 461–468. [Google Scholar]
- Murphy, T.W., Jr.; Adelberger, E.G.; Battat, B.R.; Hoyle, C.D.; Johnson, N.H.; McMillan, R.J.; Swanson, H.E. Laser Ranging to the Lost Lunokhod-1 Reflector. Icarus 2011, 211, 1103–1108. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Lunar Laser Ranging Tests of the Equivalence Principle with the Earth and Moon. Int. J. Mod. Phys. D 2009, 18, 1129–1175. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Liu, S.; Li, M.; Li, Q.; Peng, S.; Wen, B.; Zhang, S. Chang’e-3 system pinpoint landing localization based on descent image sequence. Chin. Sci. Bull. 2014, 59, 1838–1843. [Google Scholar]
- Wan, W.; Liu, Z.; Liu, Y.; Liu, B.; Di, K.; Zhou, J.; Wang, J. Descent Image Matching Based Position Evaluation for Chang’e-3 Landing Point. Spacecr. Eng. 2014, 23, 5–12. [Google Scholar]
- Liu, Z.; Di, K.; Peng, M.; Wan, W.; Liu, B.; Li, L.; Chen, H. High precision landing site mapping and rover localization for Chang’e-3 mission. Sci. China-Phys. Mech. Astron. 2015, 58, 1–11. [Google Scholar] [CrossRef]
- Di, K.; Liu, Z.; Liu, B.; Wan, W.; Peng, M.; Wang, Y.; Niu, S. Chang’e-4 lander localization based on multi-source data. J. Remote Sens. 2019, 23, 177–184. [Google Scholar]
- Wan, W.; Liu, Z.; Liu, B. Descent trajectory recovery of Chang’e-4 lander based on descent images. In Proceedings of the ISPRS Geospatial Week 2019—GSW2019, International Workshop on Planetary Remote Sensing and Mapping, Enschede, The Netherlands, 10–14 June 2019; pp. 1457–1461. [Google Scholar]
- Liu, J.; Ren, X.; Yan, W.; Li, C.; Zhang, H.; Jia, Y.; Wen, W. Descent trajectory reconstruction and landing site positioning of Chang’e-4 on the lunar farside. Nat. Commun. 2019, 10, 4229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Di, K.; Li, J. Landing site topographic mapping and rover localization for Chang’e-4 mission. Sci. China Inf. Sci. 2020, 63, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, W.; Li, J. Vision Based Chang’e-4 Landing Point Localization. Sci. Sin. Technol. 2020, 50, 41–53. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Cao, X.; Wang, F.; Yue, C.; Zhang, Z. Deep space exploration orbit design departing from circumlunar orbit of lunar base. Aerosp. Sci. Technol. 2019, 95, 105505. [Google Scholar] [CrossRef]
- Folkner, W.M.; Williams, J.G.; Boggs, D.H. The Planetary and Lunar Ephemeris DE 421. IPN Prog. Rep. 2009, 42, 1–34. [Google Scholar]
- Cao, J.; Zhang, Y.; Hu, S. An analysis of precise positioning and accuracy of the CE-3 lunar lander soft Landing. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 274–278. [Google Scholar]
- Williams, J.G.; Boggs, D.H. DE421 Lunar Orbit, Physical Librations, and Surface Coordinates. In Proceedings of the International Workshop on Laser Ranging, Poznan, Poland, 13–17 October 2008. [Google Scholar]
- Zhang, Y.; Cao, J.; Xie, J. Lunar object positioning research based on ground-based radiometric tracking Techniques. J. Electron. Meas. Instrum. 2013, 27, 907–915. [Google Scholar]
- Zhang, Y.; Wang, J.; Duan, C. Three-way measurement data accuracy analysis based on deep-space station. J. Spacecr. TT&C Technol. 2014, 33, 268–274. [Google Scholar]
- Di, K.; Liu, Y.; Liu, B. A Self-calibration bundle adjustment method for photogrammetric processing of Chang’e-2 stereo lunar imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5432–5442. [Google Scholar]
- Liu, B.; Jia, M.; Di, K. Geopositioning precision analysis of multiple image triangulation using LROC NAC lunar images. Planet. Space Sci. 2018, 162, 20–30. [Google Scholar] [CrossRef]
- Di, K.; Jia, M.; Xin, X. High-resolution large-area digital orthophoto map generation using LROC NAC images. Photogramm. Eng. Remote Sens. 2019, 85, 481–491. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Ren, X. Lunar global high precision terrain reconstruction based on Chang’e-2 stereo images. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 486–495. [Google Scholar]
- NASA Planetary Data System. Available online: https://pds.nasa.gov (accessed on 10 January 2021).
- USGS ISIS Software. Available online: https://isis.astrogeology.usgs.gov (accessed on 10 January 2021).
- Ren, X.; Liu, J.; Li, C. A global adjustment method for photogrammetric processing of Chang’e-2 stereo images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6832–6843. [Google Scholar] [CrossRef]
- NAIF. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Kernel v18. 2014. Available online: http://naif.jpl.nasa.gov/pub/naif/pds/data/lro-l-spice-6-v1.0/lrosp_1000 (accessed on 10 April 2018).
- Barker, M.K.; Mazarico, E.; Neumann, G.A. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M. First Look: Chang’e 5. Available online: https://www.lroc.asu.edu/posts/1172.2020 (accessed on 10 December 2020).
- Qian, Y.; Xiao, L.; Zhao, S. Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China’s Chang’E-5 landing region. J. Geophys. Res. Planets 2018, 13, 1407–1430. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Xiao, L.; Head, J.W.; van der Bogertd, C.H.; Hiesinger, H.; Wilson, L. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 2021, 555, 116702. [Google Scholar] [CrossRef]
- Wu, B.; Huang, J.; Li, Y. Rock abundance and crater density in the candidate Chang’e-5 landing region on the Moon. J. Geophys. Res. Planets 2018, 123, 3256–3272. [Google Scholar] [CrossRef]
- Jia, M.; Yue, Z.; Di, K. A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area. Earth Planet. Sci. Lett. 2020, 541, 116272. [Google Scholar] [CrossRef]
- Neukum, G. Meteoriten Bombardement und Datierung Planetarer Oberflachen. Habilitation Thesis, University München, Munich, Germany, 1983. [Google Scholar]
Method and Strategy | L (°W) | B (°N) | δL (°W) | δB (°N) | δL (m) | δB (m) | |
---|---|---|---|---|---|---|---|
Radio-tracking method | 48 h data | 51.9158 | 43.0587 | −0.0004 | 0.0003 | −8.9 | 9.1 |
24 h data | 51.9166 | 43.0594 | 0.0004 | 0.001 | 8.9 | 30.3 | |
12 h data | 51.9181 | 43.0591 | 0.0019 | 0.0007 | 42.1 | 21.2 | |
Image-based method | Image matching to Chang’e-2 DOM | 51.9162 | 43.0584 | —— | —— | —— | —— |
Image matching to LROC NAC DOM | 51.9156 | 43.0591 | −0.0006 | 0.0007 | −13.3 | 21.2 | |
Direct observation in LROC NAC image [32] | 51.9161 | 43.0576 | −0.0001 | -0.0008 | −2.2 | −24.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, Y.; Di, K.; Chen, M.; Duan, J.; Kong, J.; Xie, J.; Liu, Z.; Wan, W.; Rong, Z.; et al. Localization of the Chang’e-5 Lander Using Radio-Tracking and Image-Based Methods. Remote Sens. 2021, 13, 590. https://doi.org/10.3390/rs13040590
Wang J, Zhang Y, Di K, Chen M, Duan J, Kong J, Xie J, Liu Z, Wan W, Rong Z, et al. Localization of the Chang’e-5 Lander Using Radio-Tracking and Image-Based Methods. Remote Sensing. 2021; 13(4):590. https://doi.org/10.3390/rs13040590
Chicago/Turabian StyleWang, Jia, Yu Zhang, Kaichang Di, Ming Chen, Jianfeng Duan, Jing Kong, Jianfeng Xie, Zhaoqin Liu, Wenhui Wan, Zhifei Rong, and et al. 2021. "Localization of the Chang’e-5 Lander Using Radio-Tracking and Image-Based Methods" Remote Sensing 13, no. 4: 590. https://doi.org/10.3390/rs13040590
APA StyleWang, J., Zhang, Y., Di, K., Chen, M., Duan, J., Kong, J., Xie, J., Liu, Z., Wan, W., Rong, Z., Liu, B., Peng, M., & Wang, Y. (2021). Localization of the Chang’e-5 Lander Using Radio-Tracking and Image-Based Methods. Remote Sensing, 13(4), 590. https://doi.org/10.3390/rs13040590