Analysis of Using the Parabolic Antenna as the Passive Calibrator for P-Band Spaceborne SAR Radiometric Calibration
Abstract
:1. Introduction
2. The Scattering Characteristic of Parabolic Antenna
2.1. Azimuth RCS Pattern
2.2. RCS over Range Bandwidth
3. The Conditions of Using the Parabolic Antenna
3.1. The Influence of the Azimuth RCS Pattern
3.2. The Error Analysis of the Parabolic Antenna
3.2.1. Linear Model
3.2.2. Quadratic Model
4. Experiments
4.1. Error Model Verification
4.1.1. Alignment
4.1.2. Misalignment
4.2. P-Band Absolute Radiometric Calibration
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Werninghaus, R.; Buckreuss, S. The TerraSAR-X Mission and System Design. IEEE Trans. Geosci. Remote Sens. 2010, 48, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. System Design and Key Technologies of the GF-3 Satellite. Acta Geod. Cartogr. Sin. 2017, 46, 269. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Arcioni, M.; Bensi, P.; Fehringer, M.; Fois, F.; Scipal, K. The Biomass mission, status of the satellite system. In Proceedings of the Geoscience & Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Scipal, K.; Arcioni, M.; Chave, J.; Dall, J.; Fois, F.; LeToan, T.; Lin, C.C.; Papathanassiou, K.; Quegan, S.; Rocca, F.; et al. The BIOMASS mission—An ESA Earth Explorer candidate to measure the BIOMASS of the earth’s forests. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 52–55. [Google Scholar] [CrossRef] [Green Version]
- Scipal, K. The Biomass mission—ESA’S P-band polarimetric, interferomtric SAR mission. In Proceedings of the International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Freeman, A. SAR calibration: An overview. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1107–1121. [Google Scholar] [CrossRef]
- Quegan, S.; Lomas, M.; Papathanassiou, K.P.; Kim, J.S.; Tebaldini, S.; Giudici, D.; Scagliola, M.; Guccione, P.; Dall, J.; Dubois-Fenandez, P.; et al. Calibration Challenges for the Biomass P-Band SAR Instrument. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8575–8578. [Google Scholar] [CrossRef]
- Reimann, J.; Schwerdt, M.; Zink, M. Calibration Concepts for Future Low Frequency SAR Missions. In Proceedings of the Ceos Sar Workshop on Calibration & Validation, Noordwijk, The Netherlands, 27–29 October 2015. [Google Scholar]
- Reimann, J.; Schwerdt, M.; Doering, B.; Zink, M. Calibration Concepts for Future Low Frequency SAR Systems. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 1–3. [Google Scholar]
- Rommen, B.; Snoeij, P.; Bensi, P.; Sedehi, M.; Fonseca, N. Elements Towards a Cal/Val Strategy for ESA’s BIOMASS Mission. In Proceedings of the Synthetic Aperture Radar Workshop (CEOS SAR), San Jose, Costa Rica, 31 July–4 August 2017. [Google Scholar]
- Rommen, B.; Conroy, P.; van’t Klooster, C.; Vega, F.C.; Fonseca, N.; Sedehi, M. Elements towards a cal/val strategy for ESA’s BIOMASS mission. In Proceedings of the CEOS Synthetic Aperture Radar 2019 workshop, Frascati, Italy, 18–22 November 2019. [Google Scholar]
- Gray, A.L.; Vachon, P.W.; Livingstone, C.E.; Lukowski, T.I. Synthetic aperture radar calibration using reference reflectors. IEEE Trans. Geosci. Remote Sens. 1990, 28, 374–383. [Google Scholar] [CrossRef]
- Matthew, G. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR. Remote Sens. 2017, 9, 648. [Google Scholar]
- Zakharov, A.I.; Zherdev, P.A.; Borisov, M.M.; Sokolov, A.B.; van’t Klooster, C.G.M. On the stability of large antennas as calibration targets. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 7, pp. 4518–4520. [Google Scholar] [CrossRef]
- Zakharov, E.; Zherdev, P.; Sokolov, A. Intercalibration of Ers Ami and Envisat Asar with Ground- Based Parabolic Antennas. In Proceedings of the Envisat & ERS Symposium, Salzburg, Austria, 6–10 September 2004. [Google Scholar]
- Zakharov, A.I.; Zherdev, P.A.; Borisov, M.M.; Sokolov, A.B.; Estec, E. Passive Calibration Targets with Large, Stable and Controllable Radar cross Section for Spaceborne Sar. In Proceedings of the ERS-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Zakharov, A.I.; Zherdev, P.A.; Klooster, C. Study of Artificial and Natural PSS in the Area of Bear Lakes Calibration Site; European Space Agency: Paris, France, 2004. [Google Scholar]
- van’t Klooster, K.; Rommen, B.; Cátedra, F. Ground-based reflector antennas observed with space-based Synthetic Aperture Radar. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; pp. 1086–1090. [Google Scholar] [CrossRef]
- van’t Klooster, C. About ground-station antennas as ‘radar target’ for P-Band synthetic aperture radars in space. In Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, WA, USA, 3–8 July 2011; pp. 3233–3236. [Google Scholar] [CrossRef]
- Doring, B.J.; Looser, P.R.; Jirousek, M.; Schwerdt, M. Reference Target Correction Based on Point-Target SAR Simulation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 951–959. [Google Scholar] [CrossRef]
- Döring, B.J.; Looser, P.; Jirousek, M.; Schwerdt, M. Point target correction coefficients for absolute SAR calibration. In Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference, Hangzhou, China, 10–12 May 2011; pp. 1–6. [Google Scholar] [CrossRef]
- Döring, B.J.; Schwerdt, M. The Radiometric Measurement Quantity for SAR Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5307–5314. [Google Scholar] [CrossRef]
- Dring, B.J.; Schwerdt, M. Are Pixel Intensities Proportional To Radar Cross Section In SAR Images? In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012.
- Curlander, J.C.; Mcdonough, R.N. Synthetic Aperture Radar: Systems and Signal Processing; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar]
- Oliver, C.; Quegan, S. Understanding Synthetic Aperture Radar Images; SciTech Publishing: Darya Ganj, Delhi, 2004. [Google Scholar]
- Freeman, A. Radiometric calibration of SAR image data. Int. Arch. Photogramm. Remote Sens. 1993, 29, 212–222. [Google Scholar]
- El-Darymli, K.; McGuire, P.; Gill, E.; Power, D.; Moloney, C. Understanding the significance of radiometric calibration for synthetic aperture radar imagery. In Proceedings of the 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), Toronto, ON, Canada, 5–8 May 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Schwerdt, M.; Schmidt, K.; Tous Ramon, N.; Castellanos Alfonzo, G.; Döring, B.; Zink, M.; Prats, P. Independent Verification of the Sentinel-1A System Calibration. In Proceedings of the Geoscience & Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014. [Google Scholar]
- Schwerdt, M.; Brautigam, B.; Bachmann, M.; Doring, B.; Schrank, D.; Hueso Gonzalez, J. Final TerraSAR-X Calibration Results Based on Novel Efficient Methods. IEEE Trans. Geosci. Remote Sens. 2010, 48, 677–689. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Frequency | 435 MHz |
Bandwidth | 6 MHz |
Pulse width | 40 s |
Altitude | 750 km |
Velocity | 7.1 km/s |
Az.Antenna Size | 12 m |
Az.Antenna beamwidth |
Pointing Deviation | |||||
---|---|---|---|---|---|
12.67 dB | 12.95 dB | −0.28 dB | −0.28 dB | 0.00 dB | |
12.63 dB | 12.82 dB | −0.19 dB | −0.20 dB | 0.01 dB | |
12.49 dB | 12.69 dB | −0.20 dB | −0.20 dB | 0.00 dB | |
12.27 dB | 12.48 dB | −0.21 dB | −0.22 dB | 0.01 dB | |
11.97 dB | 12.27 dB | −0.30 dB | −0.31 dB | 0.01 dB | |
11.59 dB | 11.69 dB | −0.10 dB | −0.10 dB | 0.00 dB | |
11.16 dB | 11.06 dB | 0.10 dB | 0.10 dB | 0.00 dB | |
10.67 dB | 10.47 dB | 0.21 dB | 0.21 dB | 0.00 dB | |
10.14 dB | 9.78 dB | 0.36 dB | 0.36 dB | 0.00 dB |
Pointing Deviation | |||||
---|---|---|---|---|---|
9.05 dB | 8.77 dB | 0.28 dB | 0.29 dB | 0.01 dB | |
8.07 dB | 7.95 dB | 0.12 dB | 0.12 dB | 0.00 dB | |
7.14 dB | 7.08 dB | 0.06 dB | 0.06 dB | 0.00 dB | |
6.06 dB | 6.15 dB | −0.09 dB | −0.09 dB | 0.00 dB | |
4.70 dB | 4.63 dB | 0.07 dB | 0.06 dB | 0.01 dB |
Pointing Deviation | K | ||||
---|---|---|---|---|---|
12.67 dB | 45.71 dBsm | −33.04 | 12.96 dB | −32.75 | |
12.49 dB | 45.45 dBsm | −32.96 | 12.70 dB | −32.75 | |
11.97 dB | 45.02 dBsm | −33.05 | 12.28 dB | −32.74 | |
11.16 dB | 43.84 dBsm | −32.68 | 11.07 dB | −32.77 | |
10.14 dB | 42.55 dBsm | −32.41 | 9.78 dB | −32.77 | |
9.05 dB | 41.52 dBsm | −32.47 | 8.76 dB | −32.76 | |
8.07 dB | 40.70 dBsm | −32.63 | 7.95 dB | −32.75 | |
7.14 dB | 39.85 dBsm | −32.71 | 7.08 dB | −32.77 | |
6.06 dB | 38.92 dBsm | −32.86 | 6.16 dB | −32.76 | |
4.69 dB | 37.38 dBsm | −32.69 | 4.63 dB | −32.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, S.; Hong, J.; Wang, Y.; Qiu, T.; Xing, K.; Huang, J. Analysis of Using the Parabolic Antenna as the Passive Calibrator for P-Band Spaceborne SAR Radiometric Calibration. Remote Sens. 2021, 13, 4300. https://doi.org/10.3390/rs13214300
Du S, Hong J, Wang Y, Qiu T, Xing K, Huang J. Analysis of Using the Parabolic Antenna as the Passive Calibrator for P-Band Spaceborne SAR Radiometric Calibration. Remote Sensing. 2021; 13(21):4300. https://doi.org/10.3390/rs13214300
Chicago/Turabian StyleDu, Shaoyan, Jun Hong, Yu Wang, Tian Qiu, Kaichu Xing, and Jianjun Huang. 2021. "Analysis of Using the Parabolic Antenna as the Passive Calibrator for P-Band Spaceborne SAR Radiometric Calibration" Remote Sensing 13, no. 21: 4300. https://doi.org/10.3390/rs13214300
APA StyleDu, S., Hong, J., Wang, Y., Qiu, T., Xing, K., & Huang, J. (2021). Analysis of Using the Parabolic Antenna as the Passive Calibrator for P-Band Spaceborne SAR Radiometric Calibration. Remote Sensing, 13(21), 4300. https://doi.org/10.3390/rs13214300