Impact of Urban Expansion on Rain Island Effect in Jinan City, North China
Abstract
:1. Introduction
2. Materials and Methods Description
2.1. Study Area Description
2.2. Data Source Description
2.3. Methodology Description
2.3.1. Extreme Climate Indices
2.3.2. M-K and Sen’s Slope Estimator
2.3.3. Pettitt Test
2.3.4. Pearson Correlation Analysis
3. Results Analysis
3.1. Urbanization Process in Jinan City
3.2. Characteristics of Temperature in Jinan City
3.2.1. Spatial and Temporal Variations of Temperature Indices
3.2.2. Effects of Urban Expansion on Temperature
3.3. Precipitation Patterns in Jinan City
3.3.1. Characteristics of Precipitation
3.3.2. Spatial and Temporal Variations of Precipitation Indices
3.3.3. Effects of Urban Expansion on Precipitation
4. Discussion
5. Conclusions
- (1)
- Jinan City has experienced rapid urbanization since the 1978 economic reform. The impervious surface areas increased from 311.68 km2 (3.04%) in 1978 to 2389.50 km2 (23.33%) in 2017, and the impervious surfaces expanded year by year. The development of urbanization is mainly concentrated in the middle and southeast of Jinan City (intensive construction area), while the development of urbanization is relatively slow in the southern mountainous area, southwest and north of Jinan City (sparse construction area).
- (2)
- Urban expansion in Jinan City has a significant effect on temperature. On the one hand, the spatial distribution of temperature indices in Jinan City during the period of 1979–2017 is basically consistent with that of impervious surfaces, and the temperature in the intensive construction area is generally higher than that in the sparse construction area. On the other hand, urban expansion significantly decreases FD and DTR by 1.8 days and 0.1 °C, respectively, every 10 years, while TR increases by 1.1 days every 10 years. Moreover, there is a significant correlation between temperature indices and impervious surfaces in Jinan City.
- (3)
- Jinan City shows a certain degree of the rain island effect, which seems to be spatially correlated with the urban heat island effect. The frequency of events of short-duration precipitation increases, and the rainfall intensity of events generally increases. The precipitation in the wet season significantly increases in the intensive construction area. Urban expansion results in an increase of SDII, ATP, Rx1day, Rx95p, APD, R10, R25 and R50, while a decrease in CDD can be observed. There is a tendency that Jinan City’s rainfall center moves towards to the intensive construction area. In addition, the development of urbanization results in an increase in precipitation intensity and a decrease in the surface infiltration capacity in the intensive construction area of Jinan City, which is also one of the main reasons for frequent rainstorm and flood disasters in the central area of the city in recent years.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations; Population Division of the Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision, (ST/ESA/SER.A/366); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Zhang, Y.; Pang, X.; Xia, J.; Shao, Q.; Yu, E.; Zhao, T.; She, D.; Sun, J.; Yu, J.; Pan, X.; et al. Regional Patterns of Extreme Precipitation and Urban Signatures in Metropolitan Areas. J. Geophys. Res. Atmos. 2019, 124, 641–663. [Google Scholar] [CrossRef]
- Demuzere, M.; Oleson, K.; Coutts, A.M.; Pigeon, G.; Van Lipzig, N.P.M. Simulating the surface energy balance over two contrasting urban environments using the Community Land Model Urban. Int. J. Clim. 2013, 33, 3182–3205. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, D.Y.; Georgescu, M.; Wu, J.G. Impacts of urbanization on summer climate in China: An assessment with coupled land-atmospheric modeling. J. Geophys. Res. Atmos. 2016, 121, 10505–10521. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Xu, Z. Greening Implication Inferred from Vegetation Dynamics Interacted with Climate Change and Human Activities over the Southeast Qinghai–Tibet Plateau. Remote. Sens. 2019, 11, 2421. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.-H.; Xu, C.-Y.; Yang, X.-X.; Ye, X.-C. Controls of Climate and Land-Use Change on Terrestrial Net Primary Productivity Variation in a Subtropical Humid Basin. Remote. Sens. 2020, 12, 3525. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nat. Cell Biol. 2014, 511, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, A.M.; Dennis, L.Y.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat waves and urban heat islands in Europe: A review of relevant drivers. Sci. Total. Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Rozoff, C.M.; Cotton, W.R.; Adegoke, J.O. Simulation of St. Louis, Missouri, Land Use Impacts on Thunderstorms. J. Appl. Meteorol. 2003, 42, 716–738. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, X.-Y.; Jang, C. Simulating chemistry–aerosol–cloud–radiation–climate feedbacks over the continental U.S. Using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem). Atmos. Environ. 2010, 44, 3568–3582. [Google Scholar] [CrossRef]
- Dou, J.J.; Wang, Y.C.; Bornstein, R.; Miao, S.L. Observed Spatial Characteristics of Beijing Urban Climate Impacts on Summer Thunder storms. J. Appl. Meteorol. Climatol. 2015, 54, 94–105. [Google Scholar] [CrossRef]
- Shepherd, J.M.; Burian, S.J. Detection of Urban-Induced Rainfall Anomalies in a Major Coastal City. Earth Interact. 2003, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ganeshan, M.; Murtugudde, R.; Imhoff, M.L. A multi-city analysis of the UHI-influence on warm season rainfall. Urban Clim. 2013, 6, 1–23. [Google Scholar] [CrossRef]
- Miao, S.; Chen, F.; Li, Q.; Fan, S. Impacts of Urban Processes and Urbanization on Summer Precipitation: A Case Study of Heavy Rainfall in Beijing on 1 August 2006. J. Appl. Meteorol. Clim. 2011, 50, 806–825. [Google Scholar] [CrossRef]
- Yang, L.; Tian, F.; Smith, J.A.; Hu, H. Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region. J. Geophys. Res. Atmos. 2014, 119, 1203–1217. [Google Scholar] [CrossRef]
- Li, S.; Ma, J. Impact of urbanization on precipitation in Beijing area. J. Meteorol. Sci. 2011, 31, 414–421. [Google Scholar]
- Liu, J.; Xia, J.; She, D.; Li, L.; Wang, Q.; Zou, L. Evaluation of Six Satellite-Based Precipitation Products and Their Ability for Capturing Characteristics of Extreme Precipitation Events over a Climate Transition Area in China. Remote. Sens. 2019, 11, 1477. [Google Scholar] [CrossRef] [Green Version]
- Segoni, S.; Caleca, F. Definition of Environmental Indicators for a Fast Estimation of Landslide Risk at National Scale. Land 2021, 10, 621. [Google Scholar] [CrossRef]
- Zope, P.; Eldho, T.; Jothiprakash, V. Impacts of land use–land cover change and urbanization on flooding: A case study of Oshiwara River Basin in Mumbai, India. Catena 2016, 145, 142–154. [Google Scholar] [CrossRef]
- Li, G.R.; Lei, Y.L.; Yao, H.J.; Wu, S.M.; Ge, J.P. The influence of land urbanization on landslides: An empirical estima tion based on Chinese provincial panel data. Sci. Total Environ. 2017, 595, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.M. A Review of Current Investigations of Urban-Induced Rainfall and Recommendations for the Future. Earth Interact. 2005, 9, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Smith, J.A.; Baeck, M.L.; Bou-Zeid, E.; Jessup, S.M.; Tian, F.Q.; Hu, H.P. Impact of Urbanization on Heavy Convective Precipitation under Strong Large-Scale Forcing: A Case Study over the Milwaukee-Lake Michigan Region. J. Hydrometeorol. 2014, 15, 261–278. [Google Scholar] [CrossRef]
- Ramamurthy, P.; Bou-Zeid, E. Contribution of impervious surfaces to urban evaporation. Water Resour. Res. 2014, 50, 2889–2902. [Google Scholar] [CrossRef]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Wu, B.-W.; Shi, C.-E.; Zhang, J.-H.; Li, Y.-B.; Tang, W.-A.; Wen, H.-Y.; Zhang, H.-Q.; Shi, T. Impacts of Urbanization and Station-relocation on Surface Air Temperature Series in Anhui Province, China. Pure Appl. Geophys. 2012, 170, 1969–1983. [Google Scholar] [CrossRef]
- Li, P.; Xu, Z.; Ye, C.; Ren, M.; Chen, H.; Wang, J.; Song, S. Assessment on IMERG V06 Precipitation Products Using Rain Gauge Data in Jinan City, Shandong Province, China. Remote. Sens. 2021, 13, 1241. [Google Scholar] [CrossRef]
- Yang, K.; He, J. China meteorological forcing dataset (1979–2018). A Big Earth Data Platform for Three Poles. Natl. Tibet. Plateau Data Cent. 2019, 10. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Xu, Z.; Zhao, G.; Cheng, T.; Song, S. Spatial and temporal variations of precipitation during 1979–2015 in Jinan City, China. J. Water Clim. Chang. 2017, 9, 540–554. [Google Scholar] [CrossRef]
- Wei, W.; Shi, Z.; Yang, X.; Wei, Z.; Liu, Y.; Zhang, Z.; Ge, G.; Zhang, X.; Guo, H.; Zhang, K.; et al. Recent Trends of Extreme Precipitation and Their Teleconnection with Atmospheric Circulation in the Beijing-Tianjin Sand Source Region, China, 1960–2014. Atmosphere 2017, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Yu, R.; Zheng, H.; Gan, M. Spatial and temporal variations in extreme temperature in Central Asia. Int. J. Clim. 2017, 38, e388–e400. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, X.; Wang, B. Changes in precipitation extremes in Southeastern Tibet, China. Quat. Int. 2015, 380–381, 49–59. [Google Scholar] [CrossRef]
- Deng, S.L.; Chen, T.; Yang, N.; Qu, L.A.; Li, M.C.; Chen, D. Spatial and temporal distribution of rainfall and drought characteristics across the Pearl River basin. Sci. Total. Environ. 2018, 619, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.H.; Li, C. Spatiotemporal analysis of precipitation trends during 1961–2010 in Hubei province, central China. Theor. Appl. Climatol. 2016, 124, 385–399. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379. [Google Scholar] [CrossRef]
- Mallakpour, I.; Villarini, G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol. Sci. J. 2015, 61, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Holgado-Tello, F.P.; Chacon-Moscoso, S.; Barbero-Garcia, I.; Vila-Abad, E. Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Qual. Quant. 2010, 44, 153–166. [Google Scholar] [CrossRef]
- Meng, D.; Gong, H.L.; Li, X.J.; Yang, S.Y. Spatiotemporal distribution of the rainstorm and the relationship between urban heat island and urban rain island in Beijing on July 21, 2012. Remote. Sens. Land Resour. 2017, 29, 178–185. [Google Scholar]
- Cao, K.; Ge, Z.X.; Xue, M.; Song, Y.Y. Analysis of Urban Rain Island Effect in Shanghai and Its Changing Trend. Water Resour. Power 2009, 27, 31–33. [Google Scholar]
- He, P.; Jiang, Y.P.; Li, J.X.; Zhang, Q.Y. Influence of urbanization on urban rain island effect of Chuxiong City on Yunnan Plateau in recent years. Arid. Land Geogr. 2017, 40, 933–941. [Google Scholar]
- Kaufmann, R.K.; Seto, K.C.; Schneider, A.; Liu, Z.T.; Zhou, L.M.; Wang, W.L. Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit. J. Clim. 2007, 20, 2299–2306. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Chen, W.; Huang, G. Effect of urban expansion on summer rainfall in the Pearl River Delta, South China. J. Hydrol. 2019, 568, 747–757. [Google Scholar] [CrossRef]
- Qi, S.Z.; Guo, J.M.; Jia, R.; Sheng, W.F. Land use change induced ecological risk in the urbanized karst region of North China: A case study of Jinan city. Environ. Earth Sci. 2020, 79, 1–8. [Google Scholar] [CrossRef]
- Li, P.J.; Zuo, D.P.; Xu, Z.X.; Gao, X.X.; Peng, D.Z.; Kan, G.Y.; Sun, W.C.; Pang, B.; Yang, H. Impact of urbanization on variability of annual and flood season precipitation in a typical city of North China. Hydrol. Res. 2020, 51, 1150–1169. [Google Scholar] [CrossRef]
- Xue, C.; Zheng, X.Q.; Zhang, B.; Yuan, Z.Y. Evolution of a multidimensional architectural landscape under urban regeneration: A case study of Jinan, China. Ecol. Indic. 2015, 55, 12–22. [Google Scholar] [CrossRef]
- Kong, F.; Nakagoshi, N. Spatial-temporal gradient analysis of urban green spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Smith, J.A.; Luo, L.; Wang, Z.; Baeck, M.L. Urbanization and Rainfall Variability in the Beijing Metropolitan Region. J. Hydrometeorol. 2014, 15, 2219–2235. [Google Scholar] [CrossRef]
- Yu, M.; Miao, S.; Li, Q. Synoptic analysis and urban signatures of a heavy rainfall on 7 August 2015 in Beijing. J. Geophys. Res. Atmos. 2017, 122, 65–78. [Google Scholar] [CrossRef]
- Changnon, S.A.; Westcott, N.E. Heavy rainstorms in Chicago: Increasing frequency, altered impacts, and future implications. J. Am. Water Resour. Assoc. 2002, 38, 1467–1475. [Google Scholar] [CrossRef]
- Bornstein, R.; Lin, Q. Urban heat islands and summertime convective thunderstorms in Atlanta: Three case studies. Atmospheric Environ. 2000, 34, 507–516. [Google Scholar] [CrossRef]
- Sailor, D.J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. Int. J. Clim. 2011, 31, 189–199. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Atmosphere—Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.M.; Zhang, J.Y.; AghaKouchak, A.; Sen Roy, S.; Xuan, Y.Q.; Wang, G.Q.; He, R.M.; Wang, X.J.; Liu, G.S. Rapid urbanization and changes in spatiotemporal charac teristics of precipitation in Beijing metropolitan area. J. Geophys. Res. Atmos. 2014, 119, 11250–11271. [Google Scholar] [CrossRef] [Green Version]
- Bounoua, L.; Zhang, P.; Mostovoy, G.; Thome, K.J.; Masek, J.G.; Imhoff, M.L.; Shepherd, M.; Quattrochi, D.; Santanello, J.A.; Silva, J.; et al. Impact of urbanization on US surface climate. Environ. Res. Lett. 2015, 10, 084010. [Google Scholar] [CrossRef] [Green Version]
Data | Resolution | Unit | Metadata | Data Sources |
---|---|---|---|---|
Precipitation | 3 h and 0.1° | mm hr−1 | CMA station data GLDAS NOAH10SUBP 3H GLDAS NOAH025 3H TRMM 3B42 | CMFD (A Big Earth Data Platform for Three Poles) |
Temperature | 3 h and 0.1° | K | CMA station data GLDAS NOAH10SUBP 3H | CMFD (A Big Earth Data Platform for Three Poles) |
Impervious surfaces | 1 y and 30 m (60 m in 1978) | Landsat MSS 1–5, TM 4–5, ETM+, LC8; NTL data | Database of Tsinghua University (Finer Resolution Observation and Monitoring–Global Land Cover) |
Index | Description | Units |
---|---|---|
Tm | Annual mean temperature | °C |
TR | Annual count of days when daily minimum temperature>20°C | days |
FD | Annual count of days when daily minimum temperature<0°C | days |
DTR | Average of daily temperature difference | °C |
SDII | Annual total precipitation divided by wet days in the year | mm/day |
ATP | Annual total precipitation in wet days | mm |
Rx1day | Annual maximum 1-day precipitation | mm |
R95p | Annual precipitation when DP > 95th percentile | mm |
APD | Number of wet days in the year | days |
R10 | Annual count of days when DP ≥ 10 mm | days |
R25 | Annual count of days when DP ≥ 25 mm | days |
R50 | Annual count of days when DP ≥ 50 mm | days |
CDD | Maximum number of consecutive days when DP < 1 mm | days |
M-K Test | Pettitt Test | Pearson Correlation Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
Z Value | Trends | Sen’s Slope | Change Point (Year) | p Value | Trends | R Value | p Value | Correlation | |
Tm | 1.44 | Positive | 0.05 °C·(10 a)−1 | 1991 | <0.01 | * | 0.16 | 0.34 | Positive |
TR | 2.73 | Positive * | 1.1 days·(10 a)−1 | 1991 | <0.01 | * | 0.48 | <0.01 | Positive * |
FD | −3.6 | Negative * | −1.8 days·(10 a)−1 | 1991 | <0.01 | * | −0.6 | <0.01 | Negative * |
DTR | −3 | Negative * | −0.1 °C·(10 a)−1 | 1991 | <0.01 | * | −0.6 | <0.01 | Negative * |
Area | Period | Mean (mm) | Range (mm) | Z Value | Trends | Sen’s Slope (mm/10 a) |
---|---|---|---|---|---|---|
Intensive construction area | wet season | 603.24 | 258.87 to 947.19 | 2.23 | Positive * | 46.7 |
dry season | 56.16 | 15.24 to 249.64 | 1.74 | Positive | 8.4 | |
Sparse construction area | wet season | 638.84 | 298.26 to 949.48 | 1.55 | Positive | 30.4 |
dry season | 61.36 | 21.72 to 272.02 | 1.09 | Positive | 4.5 |
M-K Test | Pettitt Test | |||||
---|---|---|---|---|---|---|
Z Value | Trends | Sen’s Slope | Change Point (Year) | p Value | Trends | |
N1–3h | 5.09 | Positive * | 20.8 times·(10 a)−1 | 1997 | <0.01 | * |
P1–3h | 4.39 | Positive * | 0.3 mm·(1–3 h·10 a)−1 | 1995 | <0.01 | * |
N4–6h | 3.41 | Positive * | 5.4 times·(10 a)−1 | 2000 | <0.01 | * |
P4–6h | 4.72 | Positive * | 0.6 mm·(4–6 h·10 a)−1 | 1997 | <0.01 | * |
N7–9h | 5.2 | Positive * | 3.4 times·(10 a)−1 | 1997 | <0.01 | * |
P7–9h | 3.73 | Positive * | 1.9 mm·(7–9 h·10 a)−1 | 1996 | <0.01 | * |
N10–12h | −2.98 | Negative * | −0.9 times·(10 a)−1 | 1995 | <0.01 | * |
P10–12h | 3.48 | Positive * | 1.8 mm·(10–12 h·10 a)−1 | 1995 | <0.01 | * |
N>12h | −4.89 | Negative * | −5.2 times·(10 a)−1 | 1998 | <0.01 | * |
P>12h | 0.73 | Positive | 0.5 mm·(>12 h·10 a)−1 | 2002 | 0.18 |
M-K Test | Pettitt Test | Pearson Correlation Analysis | |||||||
---|---|---|---|---|---|---|---|---|---|
Z Value | Trends | Sen’s Slope | Change Point (Year) | p Value | Trends | R Value | p Value | Correlation | |
SDII | 2.15 | Positive * | 0.2 mm·(d·10 a) −1 | 1990 | 0.02 | * | 0.34 | <0.01 | Positive * |
ATP | 3.19 | Positive * | 17.5 mm·(10 a)−1 | 1990 | <0.01 | * | 0.53 | <0.01 | Positive * |
Rx1day | 1.38 | Positive | 1.6 mm·(10 a)−1 | 1986 | 0.11 | 0.23 | 0.15 | Positive | |
R95p | 2.15 | Positive * | 10 mm·(10 a)−1 | 1990 | 0.02 | * | 0.37 | <0.01 | Positive * |
APD | 2.08 | Positive * | 0.6 days·(10 a)−1 | 1993 | <0.01 | * | 0.32 | <0.01 | Positive * |
R10 | 2.44 | Positive * | 0.5 days·(10 a)−1 | 1990 | 0.01 | * | 0.41 | <0.01 | Positive * |
R25 | 2.01 | Positive * | 0.2 days·(10 a)−1 | 1990 | 0.04 | * | 0.36 | <0.01 | Positive * |
R50 | 1.9 | Positive | 0.1 days·(10 a)−1 | 1991 | 0.02 | * | 0.28 | 0.08 | Positive |
CDD | −1.23 | Negative | −0.8 days·(10 a)−1 | 1987 | 0.21 | −0.23 | 0.17 | Negative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xia, J.; Xu, Z.; Zou, L.; Qiao, Y.; Li, P. Impact of Urban Expansion on Rain Island Effect in Jinan City, North China. Remote Sens. 2021, 13, 2989. https://doi.org/10.3390/rs13152989
Zhao Y, Xia J, Xu Z, Zou L, Qiao Y, Li P. Impact of Urban Expansion on Rain Island Effect in Jinan City, North China. Remote Sensing. 2021; 13(15):2989. https://doi.org/10.3390/rs13152989
Chicago/Turabian StyleZhao, Yanjun, Jun Xia, Zongxue Xu, Lei Zou, Yunfeng Qiao, and Peng Li. 2021. "Impact of Urban Expansion on Rain Island Effect in Jinan City, North China" Remote Sensing 13, no. 15: 2989. https://doi.org/10.3390/rs13152989
APA StyleZhao, Y., Xia, J., Xu, Z., Zou, L., Qiao, Y., & Li, P. (2021). Impact of Urban Expansion on Rain Island Effect in Jinan City, North China. Remote Sensing, 13(15), 2989. https://doi.org/10.3390/rs13152989