Temperature Vegetation Dryness Index-Based Soil Moisture Retrieval Algorithm Developed for Geo-KOMPSAT-2A
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. GK-2A/AMI Satellite
2.3. GLDAS
3. Methods
3.1. TVDI Calculation Using GK-2A LST and NDVI
3.2. Conversion Relationship between TVDI and SM
3.3. Statistical Factors
4. Results
4.1. TVDI
4.2. GK-2A SM
5. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, S.; Ren, H.; Xue, L.; Chang, J.; Yao, X. Influence of bare rocks on surrounding soil moisture in the karst rocky desertification regions under drought conditions. Catena 2014, 116, 157–162. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Climate change, drought and desertification. J. Arid Environ. 1996, 34, 133–185. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L.; Rego, F.C.; Rocha, M.; Seneviratne, S.I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environ. Res. Lett. 2014, 9, 084008. [Google Scholar] [CrossRef]
- Ni-Meister, W. Recent advances on soil moisture data assimilation. Phys. Geogr. 2008, 29, 19–37. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J. Evaporation and surface temperature. Q. J. R. Meteorol. Soc. 1981, 107, 1–27. [Google Scholar] [CrossRef]
- Entekhabi, D. Recent advances in land-atmosphere interaction research. Rev. Geophys. 1995, 33, 995–1003. [Google Scholar] [CrossRef]
- Cahill, A.T.; Parlange, M.B.; Jackson, T.J.; O’Neill, P.; Schmugge, T. Evaporation from nonvegetated surfaces: Surface aridity methods and passive microwave remote sensing. J. Appl. Meteorol. 1999, 38, 1346–1351. [Google Scholar] [CrossRef] [Green Version]
- Dirmeyer, P.A. Using a global soil wetness dataset to improve seasonal climate simulation. J. Clim. 2000, 13, 2900–2922. [Google Scholar] [CrossRef]
- Douville, H.; Chauvin, F. Relevance of soil moisture for seasonal climate predictions: A preliminary study. Clim. Dyn. 2000, 16, 719–736. [Google Scholar] [CrossRef]
- Drusch, M. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF’s Integrated Forecast System and the TMI soil moisture data set. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Barrett, B.W.; Dwyer, E.; Whelan, P. Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques. Remote Sens. 2009, 1, 210–242. [Google Scholar] [CrossRef] [Green Version]
- Verstraeten, W.W.; Veroustraete, F.; van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sens. Environ. 2006, 101, 299–314. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, X.; Liu, J.; Moradkhani, H.; Fang, L.; Walker, J.P. Near-real-time one-kilometre Soil Moisture Active Passive soil moisture data product. Hydrol. Process. 2020, 34, 4083–4096. [Google Scholar] [CrossRef]
- Yang, K.; Chen, Y.; He, J.; Zhao, L.; Lu, H.; Qin, J.; Zheng, D.; Li, X. Development of a daily soil moisture product for the period of 2002–2011 in Chinese mainland. Sci. China Earth Sci. 2020, 63, 1113–1125. [Google Scholar] [CrossRef]
- Abbaszadeh, P.; Moradkhani, H.; Gavahi, K.; Kumar, S.; Hain, C.; Zhan, X.; Duan, Q.; Peters-Lidard, C.; Karimiziarani, S. High-Resolution SMAP Satellite Soil Moisture Product: Exploring the Opportunities. Bull. Am. Meteorol. Soc. 2021, 102, 309–315. [Google Scholar] [CrossRef]
- Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 1980, 18, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Jackson, T.J. III. Measuring surface soil moisture using passive microwave remote sensing. Hydrol. Process 1993, 7, 139–152. [Google Scholar] [CrossRef]
- De Jeu, R.A.; Wagner, W.; Holmes, T.; Dolman, A.; Van De Giesen, N.; Friesen, J. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Shin, I. A physically-based inversion algorithm for retrieving soil moisture in passive microwave remote sensing. J. Hydrol. 2011, 405, 24–30. [Google Scholar] [CrossRef]
- Ellingson, S.W.; Johnson, J.T. A polarimetric survey of radio-frequency interference in C-and X-bands in the continental United States using WindSat radiometry. IEEE Trans. Geosci. Remote Sens. 2006, 44, 540–548. [Google Scholar] [CrossRef]
- Li, L.; Njoku, E.G.; Im, E.; Chang, P.S.; Germain, K.S. A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 380–390. [Google Scholar] [CrossRef]
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- Newton, R.W.; Black, Q.R.; Makanvand, S.; Blanchard, A.J.; Jean, B.R. Soil moisture information and thermal microwave emission. IEEE Trans. Geosci. Remote Sens. 1982, GE-20, 275–281. [Google Scholar] [CrossRef]
- Bowers, S.A.; Hanks, R. Reflection of radiant energy from soils. Ph.D. Thesis, Kansas State University, Manhattan, NY, USA, 1971. [Google Scholar]
- Price, J.C. Thermal inertia mapping: A new view of the earth. J. Geophys. Res. 1977, 82, 2582–2590. [Google Scholar] [CrossRef]
- Stoner, E.R.; Baumgardner, M. Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 1981, 45, 1161–1165. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Liu, W.; Baret, F.; Gu, X.; Zhang, B.; Tong, Q.; Zheng, L. Evaluation of methods for soil surface moisture estimation from reflectance data. Int. J. Remote Sens. 2003, 24, 2069–2083. [Google Scholar] [CrossRef]
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens. 1990, 28, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Gillies, R.; Kustas, W.; Humes, K. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface e. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Ryu, S.; Cho, J.; Lee, Y.-W.; Park, N.-W.; Chung, C.-Y.; Hong, S. Infrared Soil Moisture Retrieval Algorithm Using Temperature-Vegetation Dryness Index and Moderate Resolution Imaging Spectroradiometer Data. Asia Pac. J. Atmos. Sci. 2020, 56, 275–289. [Google Scholar] [CrossRef]
- Chung, S.-R.; Ahn, M.-H.; Han, K.-S.; Lee, K.-T.; Shin, D.-B. Meteorological Products of Geo-KOMPSAT 2A (GK2A) Satellite. Asia Pac. J. Atmos. Sci. 2020, 56, 185. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-Y.; Suh, M.-S. Development of a Land Surface Temperature Retrieval Algorithm from GK2A/AMI. Remote Sens. 2020, 12, 3050. [Google Scholar] [CrossRef]
- Seong, N.; Han, K.-S.; Lee, K.; Seo, M. Estimation NDVI using normalized reflectance through GK-2A/AMI data. In Proceedings of the AGU Fall Meeting Abstracts, AGU, San Francisco, CA, USA, 13 December 2019. [Google Scholar]
- Goetz, S. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. Int. J. Remote Sens. 1997, 18, 71–94. [Google Scholar] [CrossRef]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Clarke, T.R. An empirical approach for detecting crop water stress using multispectral airborne sensors. Horttechnology 1997, 7, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.; Clarke, T.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteorol. Climatol. 1989, 28, 276–284. [Google Scholar] [CrossRef]
- Lambin, E.F.; Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sens. 1996, 17, 463–487. [Google Scholar] [CrossRef]
- Nemani, R.; Pierce, L.; Running, S.; Goward, S. Developing satellite-derived estimates of surface moisture status. J. Appl. Meteorol. Climatol. 1993, 32, 548–557. [Google Scholar] [CrossRef] [Green Version]
- Nemani, R.; Running, S. Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol. Appl. 1997, 7, 79–90. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Hanan, N.; Kabat, P.; Lesch, L. A remote sensing study of the NDVI–Ts relationship and the transpiration from sparse vegetation in the Sahel based on high-resolution satellite data. Remote Sens. Environ. 1999, 69, 224–240. [Google Scholar] [CrossRef]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.; Chen, C.; Chang, L.; Minh, V.Q. Monitoring agricultural drought in the Lower Mekong Basin using MODIS NDVI and land surface temperature data. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 417–427. [Google Scholar] [CrossRef]
- Friedl, M.; Davis, F. Sources of variation in radiometric surface temperature over a tallgrass prairie. Remote Sens. Environ. 1994, 48, 1–17. [Google Scholar] [CrossRef]
- Smith, R.; Choudhury, B. Analysis of normalized difference and surface temperature observations over southeastern Australia. Remote Sens. 1991, 12, 2021–2044. [Google Scholar] [CrossRef]
- Goward, S.N.; Xue, Y.; Czajkowski, K.P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sens. Environ. 2002, 79, 225–242. [Google Scholar] [CrossRef]
- Chen, S.; Wen, Z.; Jiang, H.; Zhao, Q.; Zhang, X.; Chen, Y. Temperature vegetation dryness index estimation of soil moisture under different tree species. Sustainability 2015, 7, 11401–11417. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.; Clarke, T.; Kustas, W.; Weltz, M.; Amer, S. Evaluation of hydrologic parameters in a semiarid rangeland using remotely sensed spectral data. Water Resour. Res. 1994, 30, 1287–1297. [Google Scholar] [CrossRef] [Green Version]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Escadafal, R.; Girard, M.-C.; Courault, D. Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Remote Sens. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Mattikalli, N.M. Soil color modeling for the visible and near-infrared bands of Landsat sensors using laboratory spectral measurements. Remote Sens. Environ. 1997, 59, 14–28. [Google Scholar] [CrossRef]
- Choi, Y.-Y.; Suh, M.-S. Land surface temperature retrieval algorithm of GEO-KOMPSAT-2A (GK-2A) Advanced Meteorological Imager (AMI). In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 9–13 December 2019. [Google Scholar]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.; Han, M. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [Google Scholar] [CrossRef]
- Awange, J.L.; Gebremichael, M.; Forootan, E.; Wakbulcho, G.; Anyah, R.; Ferreira, V.G.; Alemayehu, T. Characterization of Ethiopian mega hydrogeological regimes using GRACE, TRMM and GLDAS datasets. Adv. Water Resour. 2014, 74, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hu, C.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 2007, 109, 207–220. [Google Scholar] [CrossRef]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient; Springer: Berlin, Germany, 2009. [Google Scholar]
- Kennedy, J.B.; Neville, A.M. Basic Statistical Methods for Engineers and Scientists; Harper & Row: Manhattan, NY, USA, 1976. [Google Scholar]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.G.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Tong, C.; Wang, H.; Magagi, R.; Goïta, K.; Zhu, L.; Yang, M.; Deng, J. Soil moisture retrievals by combining passive microwave and optical data. Remote Sens. 2020, 12, 3173. [Google Scholar] [CrossRef]
Products | Temporal Resolution | Spatial Resolution (km) | Purpose |
---|---|---|---|
GK-2A LST | 10 min | 2 | Input data for TVDI |
GK-2A NDVI | 1 day | 2 | Input data for TVDI |
Latitude/Longitude | - | 2 | Ancillary data |
Land Cover | - | 2 | Ancillary data |
Land/Sea Mask | - | 2 | Ancillary data |
Solar Zenith Angle | - | 2 | Ancillary data |
Number | Type | Note |
---|---|---|
0 | Water | Excluded |
1 | Evergreen Needleleaf Forest | Included |
2 | Evergreen Broadleaf Forest | Included |
3 | Deciduous Needleleaf Forest | Included |
4 | Deciduous Broadleaf Forest | Included |
5 | Mixed Forest | Included |
6 | Closed Shrublands | Included |
7 | Open Shrublands | Included |
8 | Woody Savannas | Included |
9 | Savannas | Included |
10 | Grasslands | Included |
11 | Permanent wet land | Excluded |
12 | Croplands | Included |
13 | Urban and Built-up | Excluded |
14 | Cropland/Natural Vegetation Mosaic | Included |
15 | Snow and Ice | Excluded |
16 | Barren or Sparsely Vegetated | Included |
254 | Unclassified | Excluded |
255 | Fill Value | Excluded |
Land Cover | Northern Hemisphere | Southern Hemisphere | ||||||
---|---|---|---|---|---|---|---|---|
No. | ||||||||
a | b | c | d | a | b | c | d | |
1 | 321.6 | −15.5 | 287.9 | −9.4 | 312.0 | −7.0 | 280.1 | −0.9 |
2 | 316.0 | 2.7 | 290.3 | −14.4 | 309.6 | 6.5 | 274.6 | 2.3 |
3 | 318.4 | −3.1 | 293.0 | −13.4 | 309.0 | 5.8 | 284.1 | −10.3 |
4 | 313.8 | 4.7 | 292.2 | −15.5 | 312.6 | −1.7 | 278.4 | −0.8 |
5 | 317.9 | −1.3 | 281.7 | −4.5 | 320.4 | −11.8 | 277.5 | 0.1 |
6 | 319.5 | −5.5 | 287.0 | −4.1 | 328.7 | −24.9 | 283.5 | −6.9 |
7 | 329.9 | −19.9 | 282.8 | −4.1 | 330.9 | −27.1 | 276.9 | 1.9 |
8 | 326.4 | −9.5 | 290.0 | −12.1 | 335.9 | −30.7 | 282.4 | −5.9 |
9 | 327.0 | −9.6 | 287.9 | −8.2 | 334.1 | −26.3 | 281.8 | −3.5 |
10 | 335.6 | −21.7 | 279.0 | −0.1 | 332.8 | −28.7 | 272.5 | 5.4 |
12 | 333.9 | −20.7 | 283.2 | 2.6 | 330.6 | −24.3 | 280.1 | 0.4 |
14 | 331.6 | −15.7 | 289.7 | −8.8 | 326.7 | −12.8 | 301.9 | −27.4 |
16 | 339.6 | −33.5 | 277.3 | 21.6 | 325.3 | −27.9 | 285.9 | 24.4 |
No. | Dates for Calibration of TVDI-SM Coefficients | Dates for Validation of GK-2A–Derived SM |
---|---|---|
1 | 8 August 2019 | 3 August 2019 |
2 | 18 August 2019 | 13 August 2019 |
3 | 28 August 2019 | 23 August 2019 |
4 | 7 September 2019 | 2 September 2019 |
5 | 17 September 2019 | 12 September 2019 |
6 | 27 September 2019 | 22 September 2019 |
7 | 7 October 2019 | 2 October 2019 |
8 | 17 October 2019 | 12 October 2019 |
9 | 27 October 2019 | 22 October 2019 |
10 | 6 November 2019 | 1 November 2019 |
11 | 16 November 2019 | 11 November 2019 |
12 | 26 November 2019 | 21 November 2019 |
13 | 6 December 2019 | 1 December 2019 |
14 | 16 December 2019 | 11 December 2019 |
15 | 26 December 2019 | 21 December 2019 |
16 | 1 January 2020 | 31 December 2019 |
17 | 11 January 2020 | 6 January 2020 |
18 | 21 January 2020 | 16 January 2020 |
19 | 31 January 2020 | 26 January 2020 |
20 | 10 February 2020 | 5 February 2020 |
21 | 20 February 2020 | 15 February 2020 |
22 | 1 March 2020 | 25 February 2020 |
23 | 11 March 2020 | 6 March 2020 |
24 | 21 March 2020 | 16 March 2020 |
25 | 31 March 2020 | 26 March 2020 |
26 | 10 April 2020 | 5 April 2020 |
27 | 20 April 2020 | 15 April 2020 |
28 | 30 April 2020 | 25 April 2020 |
29 | 10 May 2020 | 5 May 2020 |
30 | 20 May 2020 | 15 May 2020 |
31 | 30 May 2020 | 25 May 2020 |
32 | 9 June 2020 | 4 June 2020 |
33 | 19 June 2020 | 14 June 2020 |
34 | 29 June 2020 | 24 June 2020 |
35 | 9 July 2020 | 4 July 2020 |
36 | 19 July 2020 | 14 July 2020 |
37 | 29 July 2020 | 24 July 2020 |
Land Cover | Northern Hemisphere | Southern Hemisphere | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No. | Slope | Intercept | R | p-Value | RMSE | Slope | Intercept | R | p-Value | RMSE |
1 | −0.045 | 0.291 | −0.130 | 0.027 | 0.056 | −0.054 | 0.284 | −0.271 | 0.371 | 0.068 |
2 | −0.040 | 0.357 | −0.100 | 0.000 | 0.049 | 0.091 | 0.274 | 0.315 | 0.000 | 0.049 |
3 | −0.043 | 0.220 | 0.086 | 0.000 | 0.047 | −0.008 | 0.295 | −0.038 | 0.783 | 0.061 |
4 | 0.044 | 0.246 | 0.118 | 0.001 | 0.045 | 0.053 | 0.279 | 0.235 | 0.084 | 0.058 |
5 | 0.123 | 0.221 | 0.268 | 0.000 | 0.059 | −0.033 | 0.295 | −0.146 | 0.197 | 0.055 |
6 | 0.076 | 0.255 | 0.217 | 0.000 | 0.057 | −0.075 | 0.254 | −0.182 | 0.098 | 0.095 |
7 | 0.039 | 0.229 | 0.107 | 0.000 | 0.050 | −0.196 | 0.222 | −0.557 | 0.000 | 0.040 |
8 | 0.069 | 0.266 | 0.175 | 0.000 | 0.056 | −0.202 | 0.284 | −0.612 | 0.000 | 0.052 |
9 | 0.006 | 0.269 | 0.018 | 0.684 | 0.060 | −0.242 | 0.298 | −0.676 | 0.000 | 0.050 |
10 | −0.145 | 0.309 | −0.432 | 0.000 | 0.050 | −0.289 | 0.346 | −0.845 | 0.000 | 0.048 |
12 | −0.095 | 0.345 | −0.197 | 0.000 | 0.063 | 0.007 | 0.220 | 0.018 | 0.638 | 0.054 |
14 | −0.053 | 0.322 | −0.137 | 0.000 | 0.056 | 0.095 | 0.246 | 0.211 | 0.001 | 0.068 |
16 | −0.040 | 0.187 | −0.139 | 0.000 | 0.044 | 0.101 | 0.057 | 0.360 | 0.000 | 0.031 |
Statistical Factors | Average Months | |||
---|---|---|---|---|
(a) Spring | (b) Summer | (c) Autumn | (d) Winter | |
CC | 0.772 | 0.832 | 0.846 | 0.767 |
Bias () | 0.001 | −0.000 | −0.001 | 0.000 |
RMSE () | 0.046 | 0.042 | 0.044 | 0.047 |
ubRMSE () | 0.046 | 0.042 | 0.044 | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, S.; Kwon, Y.-J.; Kim, G.; Hong, S. Temperature Vegetation Dryness Index-Based Soil Moisture Retrieval Algorithm Developed for Geo-KOMPSAT-2A. Remote Sens. 2021, 13, 2990. https://doi.org/10.3390/rs13152990
Ryu S, Kwon Y-J, Kim G, Hong S. Temperature Vegetation Dryness Index-Based Soil Moisture Retrieval Algorithm Developed for Geo-KOMPSAT-2A. Remote Sensing. 2021; 13(15):2990. https://doi.org/10.3390/rs13152990
Chicago/Turabian StyleRyu, Sumin, Young-Joo Kwon, Goo Kim, and Sungwook Hong. 2021. "Temperature Vegetation Dryness Index-Based Soil Moisture Retrieval Algorithm Developed for Geo-KOMPSAT-2A" Remote Sensing 13, no. 15: 2990. https://doi.org/10.3390/rs13152990
APA StyleRyu, S., Kwon, Y. -J., Kim, G., & Hong, S. (2021). Temperature Vegetation Dryness Index-Based Soil Moisture Retrieval Algorithm Developed for Geo-KOMPSAT-2A. Remote Sensing, 13(15), 2990. https://doi.org/10.3390/rs13152990