Examination of the Daily Cycle Wind Vector Modes of Variability from the Constellation of Microwave Scatterometers and Radiometers
Abstract
:1. Introduction
2. Data Sources and Method
2.1. Satellite, Mooring and Model Data Sources
2.2. Vector Reconstruction Methodology
3. Daily Wind Modes over the Tropical Pacific
3.1. Average Daily Wind Modes at the TAO-TRITON Locations
3.2. Daily Wind Modes from 2010 and 2015
3.2.1. Zonal Wind Modes
3.2.2. Meridional Wind Modes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Short, E.; Vincent, C.L.; Lane, T.P. Diurnal Cycle of Surface Winds in the Maritime Continent Observed through Satellite Scatterometry. Mon. Weather. Rev. 2019, 147, 2023–2044. [Google Scholar] [CrossRef]
- Lang, T.J. Investigating the Seasonal and Diurnal Cycles of Ocean Vector Winds Near the Philippines Using RapidScat and CCMP. J. Geophys. Res. Atmos. 2017, 122, 9668–9684. [Google Scholar] [CrossRef] [PubMed]
- Hyder, P.; Simpson, J.H.; Xing, J.; Gille, S.T. Observations over an annual cycle and simulations of wind-forced oscilla-tions near the critical latitude for diurnal–inertial resonance. Cont. Shelf Res. 2011, 31, 1576–1591. [Google Scholar] [CrossRef]
- Simpson, M.; Warrior, H.; Raman, S.; Aswathanarayana, P.A.; Mohanty, U.C.; Suresh, R. Sea-breeze-initiated rainfall over the east coast of India during the Indian southwest monsoon. Nat. Hazards 2007, 42, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, M.K.; Furuzawa, F.A.; Higuchi, A.; Nakamura, K. Comparison of Diurnal Variations in Precipitation Systems Observed by TRMM PR, TMI, and VIRS. J. Clim. 2008, 21, 4011–4028. [Google Scholar] [CrossRef]
- Yang, S.; Smith, E.A. Convective–Stratiform Precipitation Variability at Seasonal Scale from 8 Yr of TRMM Observations: Implications for Multiple Modes of Diurnal Variability. J. Clim. 2008, 21, 4087–4114. [Google Scholar] [CrossRef]
- Bowman, K.P.; Collier, J.C.; North, G.R.; Wu, Q.; Ha, E.; Hardin, J.W. Diurnal cycle of tropical precipitation in Tropical Rainfall Measuring Mission (TRMM) satellite and ocean buoy rain gauge data. J. Geophys. Res. Space Phys. 2005, 110, 11021. [Google Scholar] [CrossRef] [Green Version]
- Ando, K.; Kuroda, Y.; Fujii, Y.; Fukuda, T.; Hasegawa, T.; Horii, T.; Ishihara, Y.; Kashino, Y.; Masumoto, Y.; Mizuno, K.; et al. Fifteen years progress of the TRITON array in the Western Pacific and Eastern Indian Oceans. J. Oceanogr. 2017, 73, 403–426. [Google Scholar] [CrossRef]
- Deser, C.; Smith, C.A. Diurnal and Semidiurnal Variations of the Surface Wind Field over the Tropical Pacific Ocean. J. Clim. 1998, 11, 1730–1748. [Google Scholar] [CrossRef]
- Ueyama, R.; Deser, C. A Climatology of Diurnal and Semidiurnal Surface Wind Variations over the Tropical Pacific Ocean Based on the Tropical Atmosphere Ocean Moored Buoy Array. J. Clim. 2008, 21, 593–607. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, T.; Xie, S.-P.; Nasuno, T. Diurnal Convection-Wind Coupling in the Bay of Bengal. J. Geophys. Res. Atmos. 2017, 122, 9705–9720. [Google Scholar] [CrossRef]
- Yang, S.; Smith, E.A. Mechanisms for Diurnal Variability of Global Tropical Rainfall Observed from TRMM. J. Clim. 2006, 19, 5190–5226. [Google Scholar] [CrossRef] [Green Version]
- Kilpatrick, T.; Xie, S.-P. Circumventing rain-related errors in scatterometer wind observations. J. Geophys. Res. Atmos. 2016, 121, 9422–9440. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, L.W.; Haack, T.; Durland, T. Estimation of Time-Averaged Surface Divergence and Vorticity from Satellite Ocean Vector Winds. J. Clim. 2015, 28, 7596–7620. [Google Scholar] [CrossRef]
- Sato, T.; Miura, H.; Satoh, M.; Takayabu, Y.N.; Wang, Y. Diurnal Cycle of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model. J. Clim. 2009, 22, 4809–4826. [Google Scholar] [CrossRef]
- Yang, G.; Slingo, J. The Diurnal Cycle in the Tropics. Mon. Wea. Rev. 2001, 129, 784–801. [Google Scholar] [CrossRef]
- Durden, S.L.; Perkovic-Martin, D. The RapidScat Ocean Winds Scatterometer: A Radar System Engineering Perspective. IEEE Geosci. Remote Sens. Mag. 2017, 5, 36–43. [Google Scholar] [CrossRef]
- Gaiser, P.; Germain, K.S.; Twarog, E.; Poe, G.; Purdy, W.; Richardson, D.; Grossman, W.; Jones, W.; Spencer, D.; Golba, G.; et al. The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote. Sens. 2004, 42, 2347–2361. [Google Scholar] [CrossRef]
- Wentz, F.J.; Ricciardulli, L.; Rodriguez, E.; Stiles, B.W.; Bourassa, M.A.; Long, D.G.; Hoffman, R.N.; Stoffelen, A.; Verhoef, A.; O’Neill, L.W.; et al. Evalu-ating and Extending the Ocean Wind Climate Data Record. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2165–2185. [Google Scholar] [CrossRef] [Green Version]
- Gille, S.T.; Statom, N.M.; Smith, S.G.L. Global observations of the land breeze. Geophys. Res. Lett. 2005, 32, 32. [Google Scholar] [CrossRef] [Green Version]
- Gille, S.T.; Smith, S.G.L. When land breezes collide: Converging diurnal winds over small bodies of water. Q. J. R. Meteorol. Soc. 2014, 140, 2573–2581. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.; Kohler, M.; Bennartz, R.; O’Dell, C. The diurnal cycle of surface divergence over the global oceans. Q. J. R. Meteorol. Soc. 2009, 135, 1484–1493. [Google Scholar] [CrossRef]
- Ruf, C.; Asharaf, S.; Balasubramaniam, R.; Gleason, S.; Lang, T.; McKague, D.; Twigg, D.; Waliser, D. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bull. Am. Meteorol. Soc. 2019, 100, 2009–2023. [Google Scholar] [CrossRef]
- Yi, Y.; Johnson, J.T.; Wang, X. On the Estimation of Wind Speed Diurnal Cycles Using Simulated Measurements of CYGNSS and ASCAT. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 168–172. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A cross-calibrated, multi-platform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. American Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X. Insights on the OAFlux ocean surface vector wind analysis merged from scatterometers and passive mi-crowave radiometers (1987 onward). J. Geophys. Res. Oceans 2014, 119, 5244–5269. [Google Scholar] [CrossRef] [Green Version]
- Wentz, F.J. A 17-Yr Climate Record of Environmental Parameters Derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager. J. Clim. 2015, 28, 6882–6902. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.H.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Tang, W.; Liu, W.T.; Stiles, B.; Fore, A. Detection of diurnal cycle of ocean surface wind from space-based observations. Int. J. Remote Sens. 2014, 35, 5328–5341. [Google Scholar] [CrossRef]
- Dai, A.; Wang, J. Diurnal and Semidiurnal Tides in Global Surface Pressure Fields. J. Atmospheric Sci. 1999, 56, 3874–3891. [Google Scholar] [CrossRef]
- Liu, W.T.; Xie, X. Double intertropical convergence zones-a new look using scatterometer. Geophys. Res. Lett. 2002, 29, 29-1. [Google Scholar] [CrossRef] [Green Version]
- Rivas, M.B.; Stoffelen, A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT. Ocean Sci. 2019, 15, 831–852. [Google Scholar] [CrossRef] [Green Version]
- Glantz, M.H.; Ramírez, I.J. Reviewing the Oceanic Niño Index (ONI) to Enhance Societal Readiness for El Niño’s Impacts. Int. J. Disaster Risk Sci. 2020, 11, 394–403. [Google Scholar] [CrossRef]
- Milliff, R.F.; Morzel, J.; Chelton, D.B.; Freilich, M.H. Wind Stress Curl and Wind Stress Divergence Biases from Rain Ef-fects on QSCAT Surface Wind Retrievals. J. Atmos. Ocean. Technol. 2004, 21, 1216–1231. [Google Scholar] [CrossRef] [Green Version]
- Hristova-Veleva, S.T.; Stiles, B.L.; Rodriguez, E.; Turk, F.J.; Haddad, Z.S. The 2015–2016 El Niño Evolution and Telecon-Nections Inferred from RapidScat, ASCAT and ECMWF Winds: Does Diurnal Variability Affect the Characterization of El Niño-Related Wind Anomaly? NASA Ocean Vector Winds Science Team Meeting, 2017, La Jolla, CA. Available online: https://mdc.coaps.fsu.edu/scatterometry/meeting/docs/2016/Posters/2016_OVWST_ElNino_SHV_v02.pdf (accessed on 28 November 2020).
- Wodzicki, K.R.; Rapp, A.D. Variations in Precipitating Convective Feature Populations with ITCZ Width in the Pacific Ocean. J. Clim. 2020, 33, 4391–4401. [Google Scholar] [CrossRef] [Green Version]
- Giglio, D.; Cornuelle, B.D.; Northcott, D.M.; Gille, S.T. Modulation of Diurnal Winds in the Tropical Oceans. NASA Ocean Vector Winds Science Team Meeting, 2018, Barcelona, Spain. Available online: https://mdc.coaps.fsu.edu/scatterometry/meeting/docs/2018/docs/ThursdayApril26/Thursday_morning/Giglio_OVWST2018.pdf (accessed on 28 December 2020).
- Bourassa, M.A.; Meissner, T.; Cerovecki, I.; Chang, P.S.; Dong, X.; De Chiara, G.; Donlon, C.; Dukhovskoy, D.S.; Elya, J.; Fore, A.; et al. Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
Satellite | Sensor | Source | Posted Resolution (km) | Period Covered | LTAN |
---|---|---|---|---|---|
SeaWinds | SeaWinds | RSS | 25 | 04/2003–10/2003 | 2230 |
QuikSCAT | SeaWinds | RSS | 25 | 04/2003–11/2009 | 0600 |
QuikSCAT (nonspinning) | SeaWinds | PO.DAAC | 12.5 | 2010–2017 (intermittent) | 0600 |
ISS | RapidScat | PO.DAAC | 12.5 | 10/2014–09/2016 | variable |
Coriolis | WindSat | RSS | 25 | 04/2003–02/2017 | 1800 |
Oceansat-2 | OSCAT | PO.DAAC | 12.5 | 01/2010–02/2014 | 1200 |
MetOp-A | ASCAT | RSS | 25 | 04/2007–02/2017 | 2130 |
MetOp-B | ASCAT | RSS | 25 | 11/2012–02/2017 | 2130 |
DMSP F-16 | SSMIS | RSS | 25 | 01/2004–02/2017 | 2015-1600 |
DMSP F-17 | SSMIS | RSS | 25 | 12/2006–02/2017 | 1730-1830 |
Aqua | AMSR-E | RSS | 25 | 04/2003–10/2011 | 1330 |
GCOM-W | AMSR-2 | RSS | 25 | 07/2012–02/2017 | 1330 |
TRMM | TMI | RSS | 25 | 04/2003–12/2014 | variable |
GPM | GMI | RSS | 25 | 03/2014–02/2017 | variable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turk, F.J.; Hristova-Veleva, S.; Giglio, D. Examination of the Daily Cycle Wind Vector Modes of Variability from the Constellation of Microwave Scatterometers and Radiometers. Remote Sens. 2021, 13, 141. https://doi.org/10.3390/rs13010141
Turk FJ, Hristova-Veleva S, Giglio D. Examination of the Daily Cycle Wind Vector Modes of Variability from the Constellation of Microwave Scatterometers and Radiometers. Remote Sensing. 2021; 13(1):141. https://doi.org/10.3390/rs13010141
Chicago/Turabian StyleTurk, Francis Joseph, Svetla Hristova-Veleva, and Donata Giglio. 2021. "Examination of the Daily Cycle Wind Vector Modes of Variability from the Constellation of Microwave Scatterometers and Radiometers" Remote Sensing 13, no. 1: 141. https://doi.org/10.3390/rs13010141
APA StyleTurk, F. J., Hristova-Veleva, S., & Giglio, D. (2021). Examination of the Daily Cycle Wind Vector Modes of Variability from the Constellation of Microwave Scatterometers and Radiometers. Remote Sensing, 13(1), 141. https://doi.org/10.3390/rs13010141