Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Pre-Processing
2.3. Methods
2.3.1. Landscape Metrics
2.3.2. Spatial Autocorrelation Indicators
2.3.3. Vulnerability Evaluation Indicators
3. Results
3.1. Composite Variations of Siberian Crane Habitats
3.2. Landscape Characteristics of Siberian Crane Habitats
3.3. Spatial Autocorrelations of Siberian Crane Habitats
3.4. Vulnerability Evaluations of Siberian Cranes Habitats
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Poyang Lake and wintering Siberian cranes. Front. Ecol. Environ. 2020, 18, 100. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Fraser, J.D.; Chen, J. Wintering waterbirds in the middle and lower Yangtze River floodplain: Changes in abundance and distribution. Bird Conserv. Int. 2017, 27, 167–186. [Google Scholar] [CrossRef]
- Huang, Z.; Lu, L.; Jiao, G.; Jiang, J.; Ye, Q. Analysis of the correlations between environmental factors and rare cranes in the Poyang Lake region of China. J. Great Lakes Res. 2018, 44, 140–148. [Google Scholar] [CrossRef]
- Bai, Q.; Chen, J.; Chen, Z.; Dong, G.; Dong, J.; Dong, W.; Fu, V.W.K.; Han, Y.; Lu, G.; Li, J.; et al. Identification of coastal wetlands of international importance for waterbirds: A review of China Coastal Waterbird Surveys 2005–2013. Avian Res. 2015, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.H.; Jia, J.; Kettner, A.J.; Xing, F.; Wang, Y.P.; Xu, X.N.; Yang, Y.; Zou, X.Q.; Gao, S.; Qi, S.; et al. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China. Sci. Total Environ. 2014, 481, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Yan, B.; Zhang, X.; Zhao, D.; Guo, L.; Wang, Y.; Xia, Z. Water Regime Evolution of Large Seasonal Lakes: Indicators for Characterization and an Application in Poyang Lake, China. Int. J. Environ. Res. Public Health 2018, 15, 2598. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Ye, X.; Werner, A.D.; Li, Y.; Yao, J.; Li, X.; Xu, C. An investigation of enhanced recessions in Poyang Lake: Comparison of Yangtze River and local catchment impacts. J. Hydrol. 2014, 517, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Heim, W.; Trense, D.; Sokolova, G.V.; Kitagawa, T. Increased Populations of Endangered Cranes After Amur River Flood. Waterbirds 2017, 40, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jia, Y.; Guan, L.; Lu, C.; Lei, G.; Wen, L.; Liu, G. Optimising hydrological conditions to sustain wintering waterbird populations in Poyang Lake National Natural Reserve: Implications for dam operations. Freshw. Biol. 2013, 58, 2366–2379. [Google Scholar] [CrossRef]
- Wu, G.; Liu, Y. Assessment of the Hydro-Ecological Impacts of the Three Gorges Dam on China’s Largest Freshwater Lake. Remote Sens. 2017, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Hu, X.; Liu, G.; Jin, B.; Qin, H. Effects of water level on zooplankton community during “plate-shaped Lake Enclosed in Autumn” in a sub-lake of the Poyang lake. Acta Hydrobiol. Sin. 2019, 43, 402–414. [Google Scholar]
- Shen, R.; Lan, Z.; Fang, C.; Chen, J. The dikes of the sub-lakes change soil carbon cycle in the littoral wetland in Poyang Lake. J. Lake Sci. 2018, 30, 1260–1270. [Google Scholar]
- Guo, H.; Hu, B.; Li, Q. Effects of autumn fishery by Enclosing Plate-Shaped Lake on the winter migratory birds and conservation strategies in Nanji Wetland National Natural Reserve of the Poyang Lake, Jiangxi. Resour. Environ. Yangtza Basin 2014, 23, 46–52. (In Chinese) [Google Scholar]
- Dronova, I.; Beissinger, S.R.; Burnham, J.W.; Gong, P. Landscape-Level Associations of Wintering Waterbird Diversity and Abundance from Remotely Sensed Wetland Characteristics of Poyang Lake. Remote Sens. 2016, 8, 462. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Qi, S.; Hu, M. The positive evaluation of “Lake Enclosed in Autumn” on the habitat of winter bird in Poyang lake Wetlands. Jiangxi Sci. 2018, 36, 250–255. (In Chinese) [Google Scholar]
- Jiang, F.; Qi, S.; Liao, F.; Ding, M.; Wang, Y. Vulnerability of Siberian crane habitat to water level in Poyang Lake wetland, China. Gisci. Remote Sens. 2014, 51, 662–676. [Google Scholar] [CrossRef]
- You, H.; Xu, L.; Jiang, J.; Wang, X.; Huang, Q.; Liu, G. The effects of water level fluctuations on the wetland landscape and waterfowl habitat of Poyang lake. Fresen. Environ. Bull. 2014, 7A, 1650–1661. [Google Scholar]
- Yang, Y.; Zhan, A.; Cao, L.; Meng, F.; Xu, W. Selection of a marker gene to construct a reference library for wetland plants, and the application of metabarcoding to analyze the diet of wintering herbivorous waterbirds. PeerJ 2016, 4, e2345. [Google Scholar] [CrossRef] [Green Version]
- Chiba, A. Wintering Behavior of a Siberian Crane Grus leucogeranus in Niigata, Japan, with Special Regard to Food, Foraging and Vocal Habits. Ornithol. Sci. 2018, 17, 187–194. [Google Scholar] [CrossRef]
- Morris, K.M.; Soehren, E.C.; Woodrey, M.S.; Rush, S.A. Habitat-Suitability Model for the Yellow Rail (Coturnicops noveboracensis) in the Northern Gulf Coast of Alabama and Mississippi, USA. Remote Sens. 2020, 12, 848. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Zhou, L.; Cheng, L.; Song, Y.; Xu, W. Foraging behavior of the Greater White-fronted Goose (Anser albifrons) wintering at Shengjin Lake: Diet shifts and habitat use. Avian Res. 2020, 11, 3. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Jiao, S.; Zhang, Y.; Zhou, Y.; Lei, G.; Liu, G. Diet Shift and Its Impact on Foraging Behavior of Siberian Crane (Grus Leucogeranus) in Poyang Lake. PLoS ONE 2013, 8, e65843. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Huang, Y. Analysis on the Characteristics of Feeding Habitat of the Wintering Siberian Crane in Poyang Lake. Chin. J. Zool. 2010, 45, 46–52. [Google Scholar]
- Recher, H.F.; Davis, W.E., Jr. Foraging behaviour of mulga birds in Western Australia. I. Use of resources and temporal effects. Pac. Conserv. Biol. 2018, 24, 74. [Google Scholar] [CrossRef]
- Zhou, B.; Zhou, L.; Chen, J.; Cheng, Y.; Xu, W. Diurnal Time-Activity Budgets of Wintering Hooded Cranes (Grus monacha) in Shengjin Lake, China. Waterbirds 2010, 33, 110–115. [Google Scholar] [CrossRef]
- Chen, B.; Cui, P.; Xu, H.; Lu, X.; Lei, J.; Wu, Y.; Shao, M.; Ding, H.; Wu, J.; Cao, M.; et al. Assessing the Suitability of Habitat for Wintering Siberian Cranes (Leucogeranus leucogeranus) at Different Water Levels in Poyang Lake Area, China. Pol. J. Ecol. 2016, 64, 84–97. [Google Scholar] [CrossRef]
- Bancroft, G.T.; Gawlik, D.E.; Rutchey, K. Distribution of Wading Birds Relative to Vegetation and Water Depths in the Northern Everglades of Florida, USA. Waterbirds 2002, 25, 265–277. [Google Scholar]
- Xia, S.; Xia, S.; Wang, Y.; Wang, Y.; Lei, G.; Lei, G.; Liu, Y.; Liu, Y.; Lei, J.; Lei, J.; et al. Restriction of Herbivorous Waterbird Distributions in the Middle and Lower Yangtze River Floodplain in View of Hydrological Isolation. Wetlands 2017, 37, 79–88. [Google Scholar] [CrossRef]
- Coxen, C.L.; Frey, J.K.; Carleton, S.A.; Collins, D.P. Species distribution models for a migratory bird based on citizen science and satellite tracking data. Glob. Ecol. Conserv. 2017, 11, 298–311. [Google Scholar] [CrossRef]
- Bysykatova, I.; Germogenov, N.; Solomonov, N.; Sleptcov, S.; Vladimirtseva, M.; Egorov, N. C-2028: Rare and endangered bird of Northeast Eurasia, the Siberian white crane grus leucogeranus: Habitats, ecology, migration, wintering. Cryobiology 2014, 69, 522–523. [Google Scholar] [CrossRef]
- Musilová, Z.; Musil, P.; Zouhar, J.; Romportl, D. Long-term trends, total numbers and species richness of increasing waterbird populations at sites on the edge of their winter range: Cold-weather refuge sites are more important than protected sites. J. Ornithol. 2015, 156, 923–932. [Google Scholar] [CrossRef]
- Deng, F.; Wang, X.; Cai, X.; Li, E.; Jiang, L.; Li, H.; Yan, R. Analysis of the relationship between inundation frequency and wetland vegetation in Dongting Lake using remote sensing data. Ecohydrology 2014, 7, 717–726. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, J.; Jiang, Y.; Wang, H. Relationship between the hydrological conditions and the distribution of vegetation communities within the Poyang Lake National Nature Reserve, China. Ecol. Inform. 2012, 11, 65–75. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, L.; Zhang, H.; Han, X.; Zhang, L. Spatial–Temporal Wetland Landcover Changes of Poyang Lake Derived from Landsat and HJ-1A/B Data in the Dry Season from 1973–2019. Remote Sens. 2020, 12, 1595. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, L.; Zhao, N.; Xu, W. Effects of variation in food resources on foraging habitat use by wintering Hooded Cranes (Grus monacha). Avian Res. 2015, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Liao, C.; Wu, Z.; Guan, W.; Yang, W.; Tang, Y.; Wu, G. Effects of Land Cover Pattern Along Urban-Rural Gradient on Bird Diversity in Wetlands. Diversity 2019, 11, 86. [Google Scholar] [CrossRef] [Green Version]
- Bonthoux, S.; Lefèvre, S.; Herrault, P.-A.; Sheeren, D. Spatial and Temporal Dependency of NDVI Satellite Imagery in Predicting Bird Diversity over France. Remote Sens. 2018, 10, 1136. [Google Scholar] [CrossRef] [Green Version]
- An, A.; Zhang, Y.; Cao, L.; Jia, Q.; Wang, X. A potential distribution map of wintering Swan Goose (Anser cygnoides) in the middle and lower Yangtze River floodplain, China. Avian Res. 2018, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Li, H.; Xu, X.; Yang, G.; Liu, G.; Li, X.; Chen, D. Changing land use and its impact on the habitat suitability for wintering Anseriformes in China’s Poyang Lake region. Sci. Total Environ. 2016, 557–558, 296–306. [Google Scholar] [CrossRef]
- Liang, K.; Yan, G. Application of Landsat Imagery to Investigate Lake Area Variations and Relict Gull Habitat in Hongjian Lake, Ordos Plateau, China. Remote Sens. 2017, 9, 1019. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; He, C.; Sheng, L.; Tang, Z.; Wen, Y.; Yan, T.; Zou, C. Hydrological Modelling for Siberian Crane Grus Leucogeranus Stopover Sites in Northeast China. PLoS ONE 2015, 10, e122687. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lu, Q.; Zhou, Y.; Li, K.; Xu, Y.; Lv, Q.; Qin, J.; Ouyang, S.; Wu, X. Community characteristics of phytoplankton and management implications in Poyang Lake Basin. Limnology 2020, 21, 207–218. [Google Scholar] [CrossRef]
- Royan, A.; Hannah, D.M.; Reynolds, S.J.; Noble, D.G.; Sadler, J.P. River birds’ response to hydrological extremes: New vulnerability index and conservation implications. Biol. Conserv. 2014, 177, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, Y.; Xu, B.; Chen, X.; Jiang, Z. Exploring an efficient habitat index for predicting population and abundance of migratory birds in Poyang Lake Wetland, South China. Acta Ecol. Sin. 2018, 38, 381–390. [Google Scholar] [CrossRef]
- Jia, Y.; Guan, L.; Wang, Y.; Liu, G.; Lei, G.; Wen, L. Combining Population Growth Model and Generalized Additive Model to Determine Optimal Water Level FOR Waterbird Conservation: A Case Study of Siberian Crane (Leucogeranus Leucogeranus) in Lake Poyang, China. River Res. Appl. 2016, 32, 100–109. [Google Scholar] [CrossRef]
- Wu, X.; Lv, M.; Jin, Z.; Michishita, R.; Chen, J.; Tian, H.; Tu, X.; Zhao, H.; Niu, Z.; Chen, X.; et al. Normalized difference vegetation index dynamic and spatiotemporal distribution of migratory birds in the Poyang Lake wetland, China. Ecol. Indic. 2014, 47, 219–230. [Google Scholar] [CrossRef]
- Kuan, R.; Zhou, Y.; Li, X.; Tian, B. Spatial fuzzy comprehensive assessmentof bird habitat suitability in Chongming Dongtan. Resour. Environ. Yangtze Basin 2009, 18, 229–233. [Google Scholar]
- Rolland, V.; Barbraud, C.; Weimerskirch, H. Combined effects of fisheries and climate on a migratory long-lived marine predator. J. Appl. Ecol. 2008, 45, 4–13. [Google Scholar] [CrossRef]
- Ramírez, F.; Gutiérrez-Expósito, C.; Afán, I.; Giménez, J.; de Stephanis, R.; Forero, M.G. Human influence on gull non-breeding distribution: Potential consequences of changes in fishing practices. Mar. Ecol. Prog. Ser. 2015, 527, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Giacomazzo, M.; Bertolo, A.; Brodeur, P.; Massicotte, P.; Goyette, J.; Magnan, P. Linking fisheries to land use: How anthropogenic inputs from the watershed shape fish habitat quality. Sci. Total Environ. 2020, 717, 135377. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, L.; Feng, W.; Fan, H.; Jiang, J. Changes in Water Level Regimes in China’s Two Largest Freshwater Lakes: Characterization and Implication. Water-Sui 2019, 11, 917. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Feng, L.; Hu, C.; Chen, X. Wetland changes of China’s largest freshwater lake and their linkage with the Three Gorges Dam. Remote Sens. Environ. 2018, 204, 799–811. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, T.; Chen, L.; Zhu, D.Z.; Zhu, L.; Feng, L.; Liu, X. Impact of the Three Gorges Reservoir on the hydrologic regime of the river-lake system in the middle Yangtze River. J. Clean. Prod. 2020, 258, 121004. [Google Scholar] [CrossRef]
- Ren, J.; Zheng, Z.; Li, Y.; Lv, G.; Wang, Q.; Lyu, H.; Huang, C.; Liu, G.; Du, C.; Mu, M.; et al. Remote observation of water clarity patterns in Three Gorges Reservoir and Dongting Lake of China and their probable linkage to the Three Gorges Dam based on Landsat 8 imagery. Sci. Total Environ. 2018, 625, 1554–1566. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, N.; Yu, X.; Xia, S.; Qi, S. Identification of Wetland Boundaries of Poyang Lake and Analysis of Seasonal Change Based on Remote Sensing and GIS technology. Resour. Sci. 2010, 32, 2239–2245. (In Chinese) [Google Scholar]
- Hui, F.; Xu, B.; Huang, H.; Yu, Q.; Gong, P. Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Shan, J.; Tu, X.; Zhang, Y.; Wang, L.; Ying, Q. Community structure, abundance and spatial distribution of water birds wintering in Poyang Lake wetland. J. Lake Sci. 2019, 31, 183–194. [Google Scholar]
- Xia, S.; Yu, X.; Fan, N. The wintering habitats of migrant birds and their relationship with water level in poyang lake, China. Resour. Sci. 2010, 32, 2072–2078. (In Chinese) [Google Scholar]
- Qi, S.; Zhang, Q.; Jiang, F.; Liao, F. Study on the effects on the landscape spatial pattern of the wintering birds’ habitat from lake level in Poyang Lake Wetland. J. Nat. Resour. 2014, 29, 1345–1355. (In Chinese) [Google Scholar]
- Degtyarev, V.G.; Sleptsov, S.M.; Pshennikov, A.E. Territoriality in the eastern population of the Siberian Crane, Grus leucogeranus. Russ. J. Ecol. 2013, 44, 207–212. [Google Scholar] [CrossRef]
- Zhi, Y.; Lu, P.; Dai, N.; Shao, M.; Zeng, J. Foraging behaviour of Siberian Cranes in lotus pond habitats surrounding Poyang Lake. Acta Ecol. Sin. 2019, 39, 4266–4272. [Google Scholar]
- Cui, Y.; Dong, B.; Chen, L.; Gao, X.; Cui, Y. Study on habitat suitability of overwintering cranes based on landscape pattern change—A case study of typical lake wetlands in the middle and lower reaches of the Yangtze River. Environ. Sci. Pollut. Res. 2019, 26, 14962–14975. [Google Scholar] [CrossRef]
- Cong, P.; Chen, K.; Qu, L.; Han, J. Dynamic Changes in the Wetland Landscape Pattern of the Yellow River Delta from 1976 to 2016 Based on Satellite Data. Chin. Geogr. Sci. 2019, 29, 372–381. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Y.; Dong, G.; Hou, G.; Jiang, M. Landscape Pattern Changes in the Xingkai Lake Area, Northeast China. Int. J. Environ. Res. Public Health 2019, 16, 3820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Lin, A.; He, L.; Zhou, Z.; Yuan, M. Spatiotemporal Dynamics and Driving Forces of Urban Land-Use Expansion: A Case Study of the Yangtze River Economic Belt, China. Remote Sens. 2020, 12, 287. [Google Scholar] [CrossRef] [Green Version]
- Naha, D.; Sathyakumar, S.; Dash, S.; Chettri, A.; Rawat, G.S. Assessment and prediction of spatial patterns of human-elephant conflicts in changing land cover scenarios of a human-dominated landscape in North Bengal. PLoS ONE 2019, 14, e210580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Liu, H.; Liu, X.; Zhang, Y. Spatiotemporal evolution analysis of time-series land use change using self-organizing map to examine the zoning and scale effects. Comput. Environ. Urban Syst. 2019, 76, 11–23. [Google Scholar] [CrossRef]
- Xi, Y.; Thinh, N.; Li, C. Spatio-Temporal Variation Analysis of Landscape Pattern Response to Land Use Change from 1985 to 2015 in Xuzhou City, China. Sustainability 2018, 10, 4287. [Google Scholar] [CrossRef] [Green Version]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion Limited: London, UK, 1981. [Google Scholar]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- You, H.; Fan, H.; Xu, L.; Wu, Y.; Liu, L.; Yao, Z. Poyang Lake Wetland Ecosystem Health Assessment of Using the Wetland Landscape Classification Characteristics. Water 2019, 11, 825. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, C.; Spayd, J.; Brooks, R.P. Landscape Indicators and Ecological Condition for Mapped Wetlands in Pennsylvania, USA. Wetlands 2019, 39, 705–716. [Google Scholar] [CrossRef]
- Amaral, Y.T.; Santos, E.M.D.; Ribeiro, M.C.; Barreto, L. Landscape structural analysis of the Lençóis Maranhenses national park: Implications for conservation. J. Nat. Conserv. 2019, 51, 125725. [Google Scholar] [CrossRef]
- Senner, N.R.; Moore, J.N.; Seager, S.T.; Dougill, S.; Kreuz, K.; Senner, S.E. A salt lake under stress: Relationships among birds, water levels, and invertebrates at a Great Basin saline lake. Biol. Conserv. 2018, 220, 320–329. [Google Scholar] [CrossRef]
- Gao, Y.; Xie, Y.; Zou, D. Hydrological regime change and its ecological responses in East Dongting Lake, China. Ecohydrol. Hydrobiol. 2020, 20, 142–150. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, L.; Song, Y. Effect of water level fluctuations on temporal-spatial patterns of foraging activities by the wintering Hooded Crane (Grus monacha). Avian Res. 2015, 6, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Gnass Giese, E.E.; Howe, R.W.; Wolf, A.T.; Niemi, G.J. Breeding birds and anurans of dynamic coastal wetlands in Green Bay, Lake Michigan. J. Great Lakes Res. 2018, 44, 950–959. [Google Scholar] [CrossRef]
- Wang, W.; Fraser, J.D.; Chen, J. Distribution and Long-Term Population Trends of Wintering Waterbirds in Poyang Lake, China. Wetlands 2019, 39, 125–135. [Google Scholar] [CrossRef]
Hydrological Conditions | Image Acquired Date (YYYY/MM/DD) | Sensor | Water Level at Xingzi Station (Yellow Sea Elevation) |
---|---|---|---|
Extremely low water level | 1993/1/31 | TM | 6.69 m |
2004/2/15 | TM | 5.30 m | |
2007/1/6 | ETM+ | 5.88 m | |
2010/1/14 | ETM+ | 5.96 m | |
2014/1/9 | OLI | 5.80 m | |
2015/2/13 | OLI | 5.81 m | |
Low water level | 1995/12/7 | TM | 7.45 m |
2000/1/27 | TM | 7.90 m | |
2004/11/29 | ETM+ | 8.13 m | |
2008/12/10 | ETM+ | 8.28 m | |
2016/12/16 | OLI | 7.40 m | |
Average water level | 1999/11/16 | TM | 11.10 m |
2003/3/8 | TM | 10.82 m | |
2009/3/16 | ETM+ | 10.72 m | |
2015/10/11 | OLI | 11.46 m |
Date (YYYY/MM/DD) | Sensor | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|---|
1993/1/31 | TM | 94.17 | 0.9313 |
2004/2/15 | TM | 92.50 | 0.9117 |
2007/1/6 | ETM+ | 95.00 | 0.9411 |
2010/1/14 | ETM+ | 96.67 | 0.9545 |
2014/1/9 | OLI | 94.17 | 0.9326 |
2015/2/13 | OLI | 91.67 | 0.9083 |
1995/12/7 | TM | 93.33 | 0.9215 |
2000/1/27 | TM | 95.00 | 0.9217 |
2004/11/29 | ETM+ | 90.83 | 0.8918 |
2008/12/10 | ETM+ | 90.83 | 0.8920 |
2016/12/16 | OLI | 92.50 | 0.9132 |
1999/11/16 | TM | 96.67 | 0.9607 |
2003/3/8 | TM | 92.50 | 0.9081 |
2009/3/16 | ETM+ | 91.67 | 0.9034 |
2015/10/11 | OLI | 94.17 | 0.9309 |
Full Name | Abbreviation | Description |
---|---|---|
Largest patch index | LPI | The proportion of the area of the largest patch to the overall landscape area, which characterizes the degree of landscape fragmentation. |
Mean patch area index | AREA_MN | The average of patch area for each landscape type. It is also used to characterize the degree of landscape fragmentation. |
Area-weighted mean shape index | SHAPE_AM | The average of patch shape index weighted by the relative patch size, which helps describe the complexity of the patch shapes and examines the changes in landscape shape. |
Perimeter area fractal dimension index | PAFRAC | The average of patch shape complexity. PAFRAC ranges from 1 to 2 and the larger PAFRAC value indicates the more complex landscape pattern. |
Aggregation index | AI | The ratio of the number of similar adjacencies to the maximum one for each landscape type, when the type is clustered into a plaque to the greatest extent. AI is usually multiplied by 100 to express as a percentage. It is applied to explore the non-randomness or aggregation degree of different patch types in the landscape. |
Hydrological Conditions | Date (YYYY/MM/DD) | Deep Water | Shallow Water | Soft Mudflat | Hard Soil | Grassland | Sand |
---|---|---|---|---|---|---|---|
Extremely low water level | 1993/1/31 | 415.11 | 292.74 | 735.31 | 878.65 | 1044.04 | 84.87 |
2004/2/15 | 414.72 | 182.09 | 599.90 | 408.78 | 1510.62 | 147.34 | |
2007/1/6 | 620.14 | 202.64 | 1000.95 | 444.13 | 1153.36 | 29.46 | |
2010/1/14 | 557.11 | 394.49 | 508.28 | 399.63 | 1550.08 | 41.14 | |
2014/1/9 | 259.88 | 435.33 | 262.78 | 232.16 | 2246.67 | 13.89 | |
2015/2/13 | 502.48 | 416.28 | 439.65 | 710.35 | 1301.78 | 80.19 | |
Low water level | 1995/12/7 | 466.10 | 696.60 | 730.19 | 459.79 | 993.47 | 104.56 |
2000/1/27 | 887.17 | 230.52 | 658.38 | 232.62 | 1247.46 | 49.93 | |
2004/11/29 | 491.65 | 433.93 | 762.68 | 731.98 | 995.44 | 35.04 | |
2008/12/10 | 484.87 | 587.58 | 467.45 | 298.72 | 1531.41 | 80.68 | |
2016/12/16 | 485.12 | 503.42 | 554.89 | 399.34 | 1433.30 | 56.24 | |
Average water level | 1999/11/16 | 1341.56 | 397.93 | 257.37 | 152.63 | 1100.29 | 56.30 |
2003/3/8 | 910.44 | 1005.32 | 284.70 | 262.17 | 953.55 | 34.56 | |
2009/3/16 | 867.58 | 912.09 | 336.75 | 261.24 | 1021.87 | 51.19 | |
2015/10/11 | 1315.19 | 622.30 | 100.25 | 102.08 | 1270.00 | 40.89 |
Hydrological Conditions | Time (YYYY/MM/DD) | Poyang Lake Natural Wetland | Nanjishan Nature Reserve | Wucheng Nature Reserve |
---|---|---|---|---|
Extremely Low Water Level | 1993/1/31 | 2072.09 | 259.15 | 239.85 |
2004/2/15 | 2292.61 | 282.70 | 277.36 | |
2007/1/6 | 2356.95 | 295.75 | 288.07 | |
2010/1/14 | 2452.85 | 244.76 | 282.92 | |
2014/1/9 | 2944.78 | 328.03 | 310.75 | |
2015/2/13 | 2157.71 | 272.03 | 274.65 | |
Low Water Level | 1995/12/7 | 2420.27 | 299.20 | 286.74 |
2000/1/27 | 2136.36 | 225.05 | 292.92 | |
2004/11/29 | 2192.06 | 282.70 | 243.57 | |
2008/12/10 | 2586.44 | 309.83 | 296.69 | |
2016/12/16 | 2491.61 | 264.46 | 297.07 | |
Average Water Level | 1999/11/16 | 1755.59 | 182.81 | 297.86 |
2003/3/8 | 2243.56 | 259.51 | 277.73 | |
2009/3/16 | 2270.70 | 293.31 | 292.23 | |
2015/10/11 | 1992.56 | 263.76 | 261.98 |
Hydrological Conditions | Stability | Area | Variety | Area |
---|---|---|---|---|
Extremely low water level | Null | 71.99 | 1 | 83.93 |
1 | 165.57 | 2 | 302.48 | |
2 | 300.29 | 3 | 791.78 | |
3 | 482.69 | 4 | 1149.38 | |
4 | 792.21 | 5 | 893.16 | |
5 | 958.83 | 6 | 442.34 | |
6 | 681.22 | 7 | 86.50 | |
Low water level | Null | 166.66 | 1 | 144.31 |
1 | 269.01 | 2 | 540.59 | |
2 | 427.18 | 3 | 943.39 | |
3 | 681.87 | 4 | 925.66 | |
4 | 947.71 | 5 | 812.85 | |
5 | 970.53 | 6 | 394.49 | |
Average water level | Null | 322.21 | 1 | 181.88 |
1 | 680.27 | 2 | 867.86 | |
2 | 714.49 | 3 | 1158.78 | |
3 | 813.06 | 4 | 991.69 | |
4 | 925.37 | 5 | 552.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, L.; Hu, B.; Qi, S.; Zhang, Q.; Ning, P. Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China. Remote Sens. 2021, 13, 140. https://doi.org/10.3390/rs13010140
Zou L, Hu B, Qi S, Zhang Q, Ning P. Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China. Remote Sensing. 2021; 13(1):140. https://doi.org/10.3390/rs13010140
Chicago/Turabian StyleZou, Lin, Bisong Hu, Shuhua Qi, Qianqian Zhang, and Pan Ning. 2021. "Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China" Remote Sensing 13, no. 1: 140. https://doi.org/10.3390/rs13010140
APA StyleZou, L., Hu, B., Qi, S., Zhang, Q., & Ning, P. (2021). Spatiotemporal Variation of Siberian Crane Habitats and the Response to Water Level in Poyang Lake Wetland, China. Remote Sensing, 13(1), 140. https://doi.org/10.3390/rs13010140