Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (447)

Search Parameters:
Keywords = TRMM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 6865 KB  
Article
Land Use and Land Cover Change Patterns from Orbital Remote Sensing Products: Spatial Dynamics and Trend Analysis in Northeastern Brazil
by Jhon Lennon Bezerra da Silva, Marcos Vinícius da Silva, Pabrício Marcos Oliveira Lopes, Rodrigo Couto Santos, Ailton Alves de Carvalho, Geber Barbosa de Albuquerque Moura, Thieres George Freire da Silva, Alan Cézar Bezerra, Alexandre Maniçoba da Rosa Ferraz Jardim, Maria Beatriz Ferreira, Patrícia Costa Silva, Josef Augusto Oberdan Souza Silva, Marcio Mesquita, Pedro Henrique Dias Batista, Rodrigo Aparecido Jordan and Henrique Fonseca Elias de Oliveira
Land 2025, 14(10), 1954; https://doi.org/10.3390/land14101954 - 26 Sep 2025
Viewed by 1076
Abstract
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that [...] Read more.
Environmental degradation and soil desertification are among the most severe environmental issues of recent decades worldwide. Over time, these processes have led to increasingly extreme and highly dynamic climatic conditions. In Brazil, the Northeast Region is characterized by semi-arid and arid areas that exhibit high climatic variability and are extremely vulnerable to environmental changes and pressures from human activities. The application of geotechnologies and geographic information system (GIS) modeling is essential to mitigate the impacts and pressures on the various ecosystems of Northeastern Brazil (NEB), where the Caatinga biome is predominant and critically threatened by these factors. In this context, the objective was to map and assess the spatiotemporal patterns of land use and land cover (LULC), detecting significant trends of loss and gain, based on surface reflectance data and precipitation data over two decades (2000–2019). Remote sensing datasets were utilized, including Landsat satellite data (LULC data), MODIS sensor data (surface reflectance product) and TRMM data (precipitation data). The Google Earth Engine (GEE) software was used to process orbital images and determine surface albedo and acquisition of the LULC dataset. Satellite data were subjected to multivariate analysis, descriptive statistics, dispersion and variability assessments. The results indicated a significant loss trend over the time series (2000–2019) for forest areas (ZMK = −5.872; Tau = −0.958; p < 0.01) with an annual loss of −3705.853 km2 and a total loss of −74,117.06 km2. Conversely, farming areas (agriculture and pasture) exhibited a significant gain trend (ZMK = 5.807; Tau = 0.947; p < 0.01), with an annual gain of +3978.898 km2 and a total gain of +79,577.96 km2, indicating a substantial expansion of these areas over time. However, it is important to emphasize that deforestation of the region’s native vegetation contributes to reduced water production and availability. The trend analysis identified an increase in environmental degradation due to the rapid expansion of land use. LULC and albedo data confirmed the intensification of deforestation in the Northern, Northwestern, Southern and Southeastern regions of NEB. The Northwestern region was the most directly impacted by this increase due to anthropogenic pressures. Over two decades (2000–2019), forested areas in the NEB lost approximately 80.000 km2. Principal component analysis (PCA) identified a significant cumulative variance of 87.15%. It is concluded, then, that the spatiotemporal relationship between biophysical conditions and regional climate helps us to understand and evaluate the impacts and environmental dynamics, especially of the vegetation cover of the NEB. Full article
Show Figures

Figure 1

34 pages, 11285 KB  
Article
Bias Correction of Satellite-Derived Climatic Datasets for Water Balance Estimation
by Gudihalli M. Rajesh, Sudarshan Prasad, Sudhir Kumar Singh, Nadhir Al-Ansari, Ali Salem and Mohamed A. Mattar
Water 2025, 17(17), 2626; https://doi.org/10.3390/w17172626 - 5 Sep 2025
Cited by 1 | Viewed by 1280
Abstract
The satellite-derived climatic variables offer extensive spatial and temporal coverage for research; however, their inherent biases can subsequently reduce their accuracy for water balance estimate. This study evaluates the effectiveness of bias correction in improving the Tropical Rainfall Measuring Mission (TRMM) rainfall and [...] Read more.
The satellite-derived climatic variables offer extensive spatial and temporal coverage for research; however, their inherent biases can subsequently reduce their accuracy for water balance estimate. This study evaluates the effectiveness of bias correction in improving the Tropical Rainfall Measuring Mission (TRMM) rainfall and the Global Land Data Assimilation System (GLDAS) land surface temperature (LST) data and illustrates their long-term (2000–2019) hydrological assessment. The novelty lies in coupling the bias-corrected climate variables with the Thornthwaite–Mather water balance model as well as land use land cover (LULC) for improved predictive hydrological modeling. Bias correction significantly improved the agreement with ground observations, enhancing the R2 value from 0.89 to 0.96 for temperature and from 0.73 to 0.80 for rainfall, making targeted inputs ready to predict hydrological dynamics. LULC mapping showed a predominance of agricultural land (64.5%) in the area followed by settlements (20.0%), forest (7.3%), barren land (6.5%), and water bodies (1.7%), with soils being silt loam, clay loam, and clay. With these improved datasets, the model found seasonal rise in potential evapotranspiration (PET), peaking at 120.7 mm in June, with actual evapotranspiration (AET) following a similar trend. The annual water balance showed a surplus of 523.8 mm and deficit of 121.2 mm, which proves that bias correction not only enhances the reliability of satellite data but also reinforces the credibility of hydrological indicators, with a direct, positive impact on evidence-based irrigation planning and flood mitigation and drought management, especially in data-scarce regions. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

10 pages, 4885 KB  
Proceeding Paper
Enhancing Rainfall Measurement Using Remote Sensing Data in Sparse Rain Gauge Networks: A Case Study in White Nile State, Sudan
by Abdelbagi Y. F. Adam, Zoltán Gribovszki and Péter Kalicz
Eng. Proc. 2025, 94(1), 19; https://doi.org/10.3390/engproc2025094019 - 26 Aug 2025
Viewed by 1870
Abstract
Monitoring rainfall is essential to understanding hydrological processes, managing water resources, and mitigating drought and flood risks. Many regions, particularly in developing countries, have sparse rain gauge networks, which limit spatial coverage and result in inaccurate rainfall estimates. By combining remote sensing data [...] Read more.
Monitoring rainfall is essential to understanding hydrological processes, managing water resources, and mitigating drought and flood risks. Many regions, particularly in developing countries, have sparse rain gauge networks, which limit spatial coverage and result in inaccurate rainfall estimates. By combining remote sensing data with rain gauge measurements, rainfall estimates can be improved, and spatial coverage can be enhanced. Remote sensing techniques provide a valuable resource for supplementing and enhancing rainfall monitoring in such areas. This study leverages Global Precipitation Measurement (GPM) satellite data to enhance rainfall estimation in White Nile State, Sudan, where only two rain gauge stations are operational and the state’s total area is 39.600 km2. GPM data, well-known for its high temporal and spatial resolution, offers a promising alternative to mitigate the limitations of sparse ground-based networks. The study integrates GPM satellite data with ground-based measurements through statistical and geostatistical techniques, as well as validation, to improve rainfall accuracy. The results show that, on average, GPM data and rain gauge measurements exhibit a strong correlation of 0.87, with an annual RMSE of 10.23 mm and an AME of 8.25 mm. These findings demonstrate that GPM data effectively complements traditional rain gauge observations by accurately capturing spatial rainfall distributions and extreme precipitation events. The findings underscore the potential of remote sensing to provide reliable rainfall information in data-scarce regions, contributing to better water resource management and disaster risk reduction strategies. Full article
Show Figures

Figure 1

27 pages, 4619 KB  
Article
Assessing the Impact of Assimilated Remote Sensing Retrievals of Precipitation on Nowcasting a Rainfall Event in Attica, Greece
by Aikaterini Pappa, John Kalogiros, Maria Tombrou, Christos Spyrou, Marios N. Anagnostou, George Varlas, Christine Kalogeri and Petros Katsafados
Hydrology 2025, 12(8), 198; https://doi.org/10.3390/hydrology12080198 - 28 Jul 2025
Viewed by 930
Abstract
Accurate short-term rainfall forecasting, an essential component of the broader framework of nowcasting, is crucial for managing extreme weather events. Traditional forecasting approaches, whether radar-based or satellite-based, often struggle with limited spatial coverage or temporal accuracy, reducing their effectiveness. This study tackles these [...] Read more.
Accurate short-term rainfall forecasting, an essential component of the broader framework of nowcasting, is crucial for managing extreme weather events. Traditional forecasting approaches, whether radar-based or satellite-based, often struggle with limited spatial coverage or temporal accuracy, reducing their effectiveness. This study tackles these challenges by implementing the Local Analysis and Prediction System (LAPS) enhanced with a forward advection nowcasting module, integrating multiple remote sensing rainfall datasets. Specifically, we combine weather radar data with three different satellite-derived rainfall products (H-SAF, GPM, and TRMM) to assess their impact on nowcasting performance for a rainfall event in Attica, Greece (29–30 September 2018). The results demonstrate that combining high-resolution radar data with the broader coverage and high temporal frequency of satellite retrievals, particularly H-SAF, leads to more accurate predictions with lower uncertainty. The assimilation of H-SAF with radar rainfall retrievals (HX experiment) substantially improved forecast skill, reducing the unbiased Root Mean Square Error by almost 60% compared to the control experiment for the 60 min rainfall nowcast and 55% for the 90 min rainfall nowcast. This work validates the effectiveness of the specific LAPS/advection configuration and underscores the importance of multi-source data assimilation for weather prediction. Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
Show Figures

Figure 1

22 pages, 1585 KB  
Article
Beyond Climate Reductionism: Environmental Risks and Ecological Entanglements in the Chittagong Hill Tracts of Bangladesh
by Md. Nadiruzzaman, Hosna J. Shewly, Md. Bazlur Rashid, Sharif A. Mukul and Orchisman Dutta
Earth 2025, 6(3), 63; https://doi.org/10.3390/earth6030063 - 30 Jun 2025
Viewed by 3655
Abstract
Although Bangladesh is frequently regarded as ‘ground zero’ for climate change, the Chittagong Hill Tracts (CHTs) have only recently been acknowledged for their environmental vulnerabilities, especially after the devastating rainfall and landslides of 2017. However, attributing these risks solely to climate change overlooks [...] Read more.
Although Bangladesh is frequently regarded as ‘ground zero’ for climate change, the Chittagong Hill Tracts (CHTs) have only recently been acknowledged for their environmental vulnerabilities, especially after the devastating rainfall and landslides of 2017. However, attributing these risks solely to climate change overlooks their entanglement with structural inequalities, extractive development, deforestation, and long-standing marginalization. The study examines how climate variability intersects with broader environmental risks through a mixed-methods approach, integrating 30 years of NASA TRMM_3B42_daily rainfall data with a household survey (n = 400), life stories, focus group discussions, and key informant interviews conducted across all three CHT districts. Findings do not support a singular attribution to climate change. Rather, they reveal compounded vulnerabilities shaped by land degradation, water scarcity, flash flooding, and landslides—often linked to deforestation and neoliberal development interventions. We argue that the CHT exemplifies ecological entanglement, shaped by climate variability and structural inequalities rooted in land governance and Indigenous dispossession. By integrating spatially disaggregated climate data with historically grounded local experiential narratives, this study contributes to climate justice debates through relational, place-based understandings of vulnerability in the Global South. Full article
Show Figures

Figure 1

16 pages, 2691 KB  
Article
Comparative Analysis of GMI and DPR Precipitation Measurements over Global Oceans During Summer Season
by Eun-Kyoung Seo
Geosciences 2025, 15(6), 227; https://doi.org/10.3390/geosciences15060227 - 15 Jun 2025
Viewed by 1117
Abstract
This study provides a comprehensive comparison between Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) measurements through analysis of collocated precipitation at the 19 GHz footprint scale for pixels during hemispheric summer seasons (JJA for Northern Hemisphere and DJF [...] Read more.
This study provides a comprehensive comparison between Global Precipitation Measurement (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) measurements through analysis of collocated precipitation at the 19 GHz footprint scale for pixels during hemispheric summer seasons (JJA for Northern Hemisphere and DJF for Southern Hemisphere). Precipitation pixels exceeding 0.2 mm/h are categorized into convective, stratiform, and mixed types based on DPR classifications. While showing generally good agreement in spatial patterns, the GMI and DPR exhibit systematic differences in precipitation intensity measurements. The GMI underestimates convective precipitation intensity by 13.8% but overestimates stratiform precipitation by 12.1% compared to DPR. Mixed precipitation shows the highest occurrence frequency (47.6%) with notable differences between instruments. While measurement differences for convective precipitation have significantly improved from previous Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR) estimates (62% to 13.8%), the overall difference has increased (from 2.6% to 12.6%), primarily due to non-convective precipitation. Latitudinal analysis reveals distinct precipitation regimes: tropical regions (below ~30°) produce intense convective precipitation that contributes about 40% of total precipitation despite lower frequency, while mid-latitudes (beyond 30°) shift toward stratiform-dominated regimes where stratiform precipitation accounts for 60–90% of the total. Additionally, geographical variation in GMI-DPR differences shows a see-saw pattern across latitude bands, with opposite signs between tropical and mid-latitude regions for convective and stratiform precipitation types. A fundamental transition in precipitation characteristics occurs between 30° and 40°, reflecting changes in precipitation mechanisms across Earth’s climate zones. Analysis shows that tropical precipitation systems generate approximately three times more precipitation per unit area than mid-latitude regions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

19 pages, 4638 KB  
Article
Comparison and Evaluation of Rain Gauge, CMORPH, TRMM PR and GPM DPR KuPR Precipitation Products over South China
by Rui Wang, Huiping Li, Hao Huang and Liangliang Li
Remote Sens. 2025, 17(12), 2040; https://doi.org/10.3390/rs17122040 - 13 Jun 2025
Viewed by 740
Abstract
Remote sensing precipitation products are essential for the systematic analysis of precipitation characteristics and changes. This study conducts a comparative evaluation of precipitation products from rain gauge stations, Climate Prediction Center morphing technique (CMORPH), Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) version [...] Read more.
Remote sensing precipitation products are essential for the systematic analysis of precipitation characteristics and changes. This study conducts a comparative evaluation of precipitation products from rain gauge stations, Climate Prediction Center morphing technique (CMORPH), Tropical Rainfall Measuring Mission precipitation radar (TRMM PR) version 7 and Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar Ku band (DPR KuPR) version 6 orbital observations during the common observational period (April–September 2014) across South China. The spatial patterns and probability density function of rain rates from four precipitation products show similar features. However, average rain rates from CMORPH (0.2–2.6 mm/h) tend to be smaller than those from rain gauge (0.1–4.4 mm/h) in temporal and spatial distribution. Conversely, average rain rates from TRMM PR and GPM KuPR (0.4–10.0 mm/h) are generally larger and exhibit more pronounced monthly changes. Despite notable differences in the number of detection samples, TRMM and GPM exhibit comparable spatiotemporal distributions and vertical structures, including rain-rate profiles, storm top heights and liquid (ice) water path. This confirms the consistency of space-borne precipitation radars and provides a foundation for analyzing long-term precipitation trends. Further analysis reveals that light rain rates from CMORPH have relatively small deviations, while rain rates generally tend to underestimate the rain rate compared to rain gauge. In contrast, TRMM PR and GPM KuPR tend to generally overestimate rain rates. Meanwhile, CMORPH (1.5–6.0 mm/h) shows larger deviations from rain gauge than TRMM and GPM, and the bias progressively increases as rain rates rise, as indicated by root mean square error results. Several statistical metrics suggest that although the missing detection rates of TRMM and GPM are higher than those of CMORPH (probability of detection 10–60%), their false detection rates are spatially lower (false alert ratio 10–30%) in Middle-East China. This study aims to provide valuable insights for enhancing precipitation retrieval algorithms and improving the applicability of remote sensing precipitation products. Full article
Show Figures

Figure 1

22 pages, 4147 KB  
Article
Evaluation of the Extreme Precipitation and Runoff Flow Characteristics in a Semiarid Sub-Basin Based on Three Satellite Precipitation Products
by Rosalía López Barraza, María Teresa Alarcón Herrera, Ana Elizabeth Marín Celestino, Armando Daniel Blanco Jáquez and Diego Armando Martínez Cruz
Hydrology 2025, 12(4), 89; https://doi.org/10.3390/hydrology12040089 - 15 Apr 2025
Cited by 1 | Viewed by 1083
Abstract
In this study, we analyzed the suitability of using the CHIRPS, CMORPH and TRMM platforms in monitoring extreme precipitation events, precipitation–runoff relationships, and seasonal/year-to-year variability in the Saltito semiarid sub-basin in the Mexican state of Durango. Satellite precipitation products (SPP) in 16 sites [...] Read more.
In this study, we analyzed the suitability of using the CHIRPS, CMORPH and TRMM platforms in monitoring extreme precipitation events, precipitation–runoff relationships, and seasonal/year-to-year variability in the Saltito semiarid sub-basin in the Mexican state of Durango. Satellite precipitation products (SPP) in 16 sites were contrasted point to point with data from rainfall gauge stations and with a daily temporal resolution for the period of four years (2015–2019). Using this information, we constructed Rx1d, Rx2d, R25mm, and RR95 extreme rainfall indices. For the precipitation–runoff relationships, a runoff model based on the Storm Water Management Model (SWMM) was calibrated and validated with gauge data, and we obtained the Qx1d, Qx2d, and Qx3d runoff indices. We used the bias volume (%), MSE, correlation coefficient, and median bias to evaluate the ability of satellite products to detect and analyze extreme precipitation and run flow events. Although these sensors tend to overestimate both precipitation levels and the occurrence of extreme precipitation events, their high spatial and temporal resolutions make them a reliable tool for the analysis of trends in climate change indices. As a result, they serve as a useful resource in evaluating the intensity of climate change in the region, particularly in terms of precipitation patterns. They also allow hydrological modeling and the observation of precipitation–runoff relationships. This is relevant in the absence of precipitation and hydrometric information, which is usually common in vast regions of the developing world. Full article
(This article belongs to the Section Hydrological Measurements and Instrumentation)
Show Figures

Figure 1

22 pages, 4618 KB  
Article
Understanding Climate Change Impacts on Streamflow by Using Machine Learning: Case Study of Godavari Basin
by Ravi Ande, Chandrashekar Pandugula, Darshan Mehta, Ravikumar Vankayalapati, Prashant Birbal, Shashikant Verma, Hazi Mohammad Azamathulla and Nisarg Nanavati
Water 2025, 17(8), 1171; https://doi.org/10.3390/w17081171 - 14 Apr 2025
Cited by 1 | Viewed by 2039
Abstract
The study aims to assess future streamflow forecasts in the Godavari basin of India under climate change scenarios. The primary objective of the Coupled Model Inter-comparison Project Phase 6 (CMIP6) was to evaluate future streamflow forecasts across different catchments in the Godavari basin, [...] Read more.
The study aims to assess future streamflow forecasts in the Godavari basin of India under climate change scenarios. The primary objective of the Coupled Model Inter-comparison Project Phase 6 (CMIP6) was to evaluate future streamflow forecasts across different catchments in the Godavari basin, India, with an emphasis on understanding the impacts of climate change. This study employed both conceptual and machine learning models to assess how changing precipitation patterns and temperature variations influence streamflow dynamics. Seven satellite precipitation products CMORPH, Princeton Global Forcing (PGF), Tropical Rainfall Measuring Mission (TRMM), Climate Prediction Centre (CPC), Infrared Precipitation with Stations (CHIRPS), and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN-CDR) were evaluated in a gridded precipitation evaluation over the Godavari River basin. Results of Multi-Source Weighted-Ensemble Precipitation (MSWEP) had a Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), and root mean square error (RMSE) of 0.806, 0.831, and 56.734 mm/mon, whereas the Tropical Rainfall Measuring Mission had 0.768, 0.846, and 57.413 mm, respectively. MSWEP had the highest accuracy, the lowest false alarm ratio, and the highest Peirce’s skill score (0.844, 0.571, and 0.462). Correlation and pairwise correlation attribution approaches were used to assess the input parameters, which included a two-day lag of streamflow, maximum and minimum temperatures, and several precipitation datasets (IMD, EC-Earth3, EC-Earth3-Veg, MIROC6, MRI-ESM2-0, and GFDL-ESM4). CMIP6 datasets that had been adjusted for bias were used in the modeling process. R, NSE, RMSE, and R2 assessed the model’s effectiveness. RF and M5P performed well when using CMIP6 datasets as input. RF demonstrated adequate performance in testing (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6) and extremely good performance in training (0.75 < NSE < 1 and 0.7 < R < 1). Likewise, M5P demonstrated good performance in both training and testing (0.4 < NSE < 0.50 and 0.5 < R2 < 0.6). While RF was the best performer for both datasets, Indian Meteorological Department outperformed all CMIP6 datasets in streamflow modeling. Using the Indian Meteorological Department gridded precipitation, RF’s NSE, R, R2, and RMSE values during training were 0.95, 0.979, 0.937, and 30.805 m3/s. The test results were 0.681, 0.91, 0.828, and 41.237 m3/s. Additionally, the Multi-Layer Perceptron (MLP) model demonstrated consistent performance across both the training and assessment phases, reinforcing the reliability of machine learning approaches in climate-informed hydrological forecasting. This study underscores the significance of incorporating climate change projections into hydrological modeling to enhance water resource management and adaptation strategies in the Godavari basin and similar regions facing climate-induced hydrological shifts. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

18 pages, 17515 KB  
Article
Regional Drought Monitoring Using Satellite-Based Precipitation and Standardized Palmer Drought Index: A Case Study in Henan Province, China
by Mingwei Ma, Fandi Xiong, Hongfei Zang, Chongxu Zhao, Yaquan Wang and Yuhuai He
Water 2025, 17(8), 1123; https://doi.org/10.3390/w17081123 - 9 Apr 2025
Viewed by 987
Abstract
Drought poses significant challenges to agricultural productivity and water resource sustainability in Henan Province, emphasizing the need for effective monitoring approaches. This study investigates the suitability of the TRMM 3B43V7 satellite precipitation product for drought assessment, based on monthly data from 15 meteorological [...] Read more.
Drought poses significant challenges to agricultural productivity and water resource sustainability in Henan Province, emphasizing the need for effective monitoring approaches. This study investigates the suitability of the TRMM 3B43V7 satellite precipitation product for drought assessment, based on monthly data from 15 meteorological stations during 1998–2019. Satellite-derived precipitation was compared with ground-based observations, and the Standardized Palmer Drought Index (SPDI) was calculated to determine the optimal monitoring timescale. Statistical metrics, including Nash–Sutcliffe Efficiency (NSE = 0.87) and Pearson correlation coefficient (PCC = 0.88), indicate high consistency between TRMM data and ground measurements. The 12-month SPDI (SPDI-12) was found to be the most effective for capturing historical drought variability. To support integrated drought management, a regionally adaptive framework is recommended, balancing agricultural demands and ecosystem stability through tailored strategies such as enhanced irrigation efficiency in humid regions and ecological restoration in arid zones. These findings provide a foundation for implementing an operational drought monitoring and response system in Henan Province. Full article
Show Figures

Figure 1

32 pages, 11641 KB  
Article
The Performance of a High-Resolution WRF Modelling System in the Simulation of Severe Tropical Cyclones over the Bay of Bengal Using the IMDAA Regional Reanalysis Dataset
by Thatiparthi Koteshwaramma, Kuvar Satya Singh and Sridhara Nayak
Climate 2025, 13(1), 17; https://doi.org/10.3390/cli13010017 - 13 Jan 2025
Cited by 1 | Viewed by 2073
Abstract
Extremely severe cyclonic storms over the North Indian Ocean increased by approximately 10% during the past 30 years. The climatological characteristics of tropical cyclones for 38 years were assessed over the Bay of Bengal (BoB). A total of 24 ESCSs formed over the [...] Read more.
Extremely severe cyclonic storms over the North Indian Ocean increased by approximately 10% during the past 30 years. The climatological characteristics of tropical cyclones for 38 years were assessed over the Bay of Bengal (BoB). A total of 24 ESCSs formed over the BoB, having their genesis in the southeast BoB, and the intensity and duration of these storms have increased in recent times. The Advanced Research version of the Weather Research and Forecasting (ARW) model is utilized to simulate the five extremely severe cyclonic storms (ESCSs) over the BoB during the past two decades using the Indian Monsoon Data Assimilation and Analysis (IMDAA) data. The initial and lateral boundary conditions are derived from the IMDAA datasets with a horizontal resolution of 0.12° × 0.12°. Five ESCSs from the past two decades were considered: Sidr 2007, Phailin 2013, Hudhud 2014, Fani 2019, and Amphan 2020. The model was integrated up to 96 h using double-nested domains of 12 km and 4 km. Model performance was evaluated using the 4 km results, compared with the available observational datasets, including the best-fit data from the India Meteorological Department (IMD), the Tropical Rainfall Measuring Mission (TRMM) satellite, and the Doppler Weather Radar (DWR). The results indicated that IMDAA provided accurate forecasts for Fani, Hudhud, and Phailin regarding the track, intensity, and mean sea level pressure, aligning well with the IMD observational datasets. Statistical evaluation was performed to estimate the model skills using Mean Absolute Error (MAE), the Root Mean Square Error (RMSE), the Probability of Detection (POD), the Brier Score, and the Critical Successive Index (CSI). The calculated mean absolute maximum sustained wind speed errors ranged from 8.4 m/s to 10.6 m/s from day 1 to day 4, while mean track errors ranged from 100 km to 496 km for a day. The results highlighted the prediction of rainfall, maximum reflectivity, and the associated structure of the storms. The predicted 24 h accumulated rainfall is well captured by the model with a high POD (96% for the range of 35.6–64.4 mm/day) and a good correlation (65–97%) for the majority of storms. Similarly, the Brier Score showed a value of 0.01, indicating the high performance of the model forecast for maximum surface winds. The Critical Successive Index was 0.6, indicating the moderate model performance in the prediction of tracks. It is evident from the statistical analysis that the performance of the model is good in forecasting storm structure, intensity and rainfall. However, the IMDAA data have certain limitations in predicting the tracks due to inadequate representation of the large-scale circulations, necessitating improvement. Full article
Show Figures

Figure 1

37 pages, 10558 KB  
Article
Climate Impact on Evapotranspiration in the Yellow River Basin: Interpretable Forecasting with Advanced Time Series Models and Explainable AI
by Sheheryar Khan, Huiliang Wang, Umer Nauman, Rabia Dars, Muhammad Waseem Boota and Zening Wu
Remote Sens. 2025, 17(1), 115; https://doi.org/10.3390/rs17010115 - 1 Jan 2025
Cited by 5 | Viewed by 1836
Abstract
Evapotranspiration (ET) plays a crucial role in the hydrological cycle, significantly impacting agricultural productivity and water resource management, particularly in water-scarce areas. This study explores the effects of key climate variables temperature, precipitation, solar radiation, wind speed, and humidity on ET from 2000 [...] Read more.
Evapotranspiration (ET) plays a crucial role in the hydrological cycle, significantly impacting agricultural productivity and water resource management, particularly in water-scarce areas. This study explores the effects of key climate variables temperature, precipitation, solar radiation, wind speed, and humidity on ET from 2000 to 2020, with forecasts extended to 2030. Advanced data preprocessing techniques, including Yeo-Johnson and Box-Cox transformations, Savitzky–Golay smoothing, and outlier elimination, were applied to improve data quality. Datasets from MODIS, TRMM, GLDAS, and ERA5 were utilized to enhance model accuracy. The predictive performance of various time series forecasting models, including Prophet, SARIMA, STL + ARIMA, TBATS, ARIMAX, and ETS, was systematically evaluated. This study also introduces novel algorithms for Explainable AI (XAI) and SHAP (SHapley Additive exPlanations), enhancing the interpretability of model predictions and improving understanding of how climate variables affect ET. This comprehensive methodology not only accurately forecasts ET but also offers a transparent approach to understanding climatic effects on ET. The results indicate that Prophet and ETS models demonstrate superior prediction accuracy compared to other models. The ETS model achieved the lowest Mean Absolute Error (MAE) values of 0.60 for precipitation, 0.51 for wind speed, and 0.48 for solar radiation. Prophet excelled with the lowest Root Mean Squared Error (RMSE) values of 0.62 for solar radiation, 0.67 for wind speed, and 0.74 for precipitation. SHAP analysis indicates that temperature has the strongest impact on ET predictions, with SHAP values ranging from −1.5 to 1.0, followed by wind speed (−0.75 to 0.75) and solar radiation (−0.5 to 0.5). Full article
(This article belongs to the Special Issue Advanced Techniques for Water-Related Remote Sensing (Second Edition))
Show Figures

Figure 1

19 pages, 18178 KB  
Article
Spatiotemporal Variations of Precipitation Extremes and Population Exposure in the Beijing–Tianjin–Hebei Region, China
by Hao Lin, Xi Yu, Yumei Lin and Yandong Tang
Water 2024, 16(24), 3594; https://doi.org/10.3390/w16243594 - 13 Dec 2024
Cited by 1 | Viewed by 1336
Abstract
In recent years, precipitation extremes in China have increased due to global warming, posing a significant threat to human life and property. It is thus crucial to understand the changes in population exposure to precipitation extremes and the causes of these changes, since [...] Read more.
In recent years, precipitation extremes in China have increased due to global warming, posing a significant threat to human life and property. It is thus crucial to understand the changes in population exposure to precipitation extremes and the causes of these changes, since complex terrain areas are not accurately simulated by rain gauge interpolation data. Thus, we first used three satellite-based precipitation products—TRMM 3B42, CHIRPS, and CMORPH—combined with population data to analyze the spatiotemporal changes of precipitation extremes and population exposure from 1998 to 2019 in the Beijing–Tianjin–Hebei (BTH) region. In addition, the contributions of population, climate, and composite factors were quantified. The results showed that TRMM 3B42 outperformed the other two datasets in the BTH region. Over the past 22 years, the precipitation extremes in the central and northeastern regions, especially in Beijing, reached 2.5 days per decade, while the northern and southern regions showed a downward trend. The highest population exposure was mainly concentrated in central Beijing, most areas of Tianjin, and the urban centers of cities in southeastern Hebei province. Compared to the 2000s, a significant increase in exposure was observed in Beijing, Tianjin, and Zhangjiakou in the 2010s, whereas other regions showed negligible changes during this period. Climatic factors had the greatest influence on population exposure in most cities such as Qinhuangdao and Hengshui, where their climatic contribution exceeded 70%. While population change was more responsible for the increase in population exposure in the densely populated cities such as Tianjin, Handan, and Langfang, these cities contributed over 60% of the population. The interaction effect in Beijing and Tianjin was relatively obvious. The results of this study can provide a scientific basis for formulating targeted disaster risk management measures against climate change in the BTH region. Full article
Show Figures

Figure 1

18 pages, 9125 KB  
Article
Spatial-Temporal Evaluation of Satellite-Derived Rainfall Estimations for Water Resource Applications in the Upper Congo River Basin
by Alaba Boluwade
Remote Sens. 2024, 16(20), 3868; https://doi.org/10.3390/rs16203868 - 18 Oct 2024
Cited by 3 | Viewed by 1606
Abstract
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of [...] Read more.
Satellite rainfall estimates are robust alternatives to gauge precipitation, especially in Africa, where several watersheds and regional water basins are poorly gauged or ungauged. In this study, six satellite precipitation products, the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS); Tropical Applications of Meteorology Using Satellite and Ground-based Observations (TAMSAT); TRMM Multi-satellite Precipitation Analysis (TMPA); and the National Aeronautics and Space Administration’s new Integrated Multi-SatellitE Retrievals for Global Precipitation Measurement (GPM) early run (IMERG-ER), late run (IMERG-LR), and final run (IMERG-FR), were used to force a gauge-calibrated Soil & Water Assessment Tool (SWAT) model for the Congo River Basin, Central Africa. In this study, the National Centers for Environmental Prediction’s Climate Forecast System Reanalysis (CFSR) calibrated version of the SWAT was used as the benchmark/reference, while scenario versions were created as configurations using each satellite product identified above. CFSR was used as an independent sample to prevent bias toward any of the satellite products. The calibrated CFSR model captured and reproduced the hydrology (timing, peak flow, and seasonality) of this basin using the average monthly discharge from January 1984–December 1991. Furthermore, the results show that TMPA, IMERG-FR, and CHIRPS captured the peak flows and correctly reproduced the seasonality and timing of the monthly discharges (January 2007–December 2010). In contrast, TAMSAT, IMERG-ER, and IMERG-LR overestimated the peak flows. These results show that some of these precipitation products must be bias-corrected before being used for practical applications. The results of this study will be significant in integrated water resource management in the Congo River Basin and other regional river basins in Africa. Most importantly, the results obtained from this study have been hosted in a repository for free access to all interested in hydrology and water resource management in Africa. Full article
(This article belongs to the Special Issue Synergetic Remote Sensing of Clouds and Precipitation II)
Show Figures

Graphical abstract

23 pages, 10381 KB  
Article
Modeling and Application of Drought Monitoring with Adaptive Spatial Heterogeneity Using Eco–Geographic Zoning: A Case Study of Drought Monitoring in Yunnan Province, China
by Quanli Xu, Shan Li, Junhua Yi and Xiao Wang
Water 2024, 16(17), 2500; https://doi.org/10.3390/w16172500 - 3 Sep 2024
Cited by 2 | Viewed by 1562
Abstract
Drought, characterized by frequent occurrences, an extended duration, and a wide range of destruction, has become one of the natural disasters posing a significant threat to both socioeconomic progress and agricultural livelihoods. Large-scale geographical environments often exhibit obvious spatial heterogeneity, leading to significant [...] Read more.
Drought, characterized by frequent occurrences, an extended duration, and a wide range of destruction, has become one of the natural disasters posing a significant threat to both socioeconomic progress and agricultural livelihoods. Large-scale geographical environments often exhibit obvious spatial heterogeneity, leading to significant spatial differences in drought’s development and outcomes. However, traditional drought monitoring models have not taken into account the impact of regional spatial heterogeneity on drought, resulting in evaluation results that do not match the actual situation. In response to the above-mentioned issues, this study proposes the establishment of ecological–geographic zoning to adapt to the spatially stratified heterogeneous characteristics of large-scale drought monitoring. First, based on the principles of ecological and geographical zoning, an appropriate index system was selected to carry out ecological and geographical zoning for Yunnan Province. Second, based on the zoning results and using data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and the Tropical Rainfall Measuring Mission (TRMM) 3B43, the vegetation condition index (VCI), the temperature condition index (TCI), the precipitation condition index (TRCI), and three topographic factors including the digital elevation model (DEM), slope (SLOPE), and aspect (ASPECT) were selected as model parameters. Multiple linear regression models were then used to establish integrated drought monitoring frameworks at different eco–geographical zoning scales. Finally, the standardized precipitation evapotranspiration index (SPEI) was used to evaluate the monitoring effects of the model, and the spatiotemporal variation patterns and characteristics of winter and spring droughts in Yunnan Province from 2008–2019 were further analyzed. The results show that (1) compared to the traditional non-zonal models, the drought monitoring model constructed based on ecological–geographic zoning has a higher correlation and greater accuracy with the SPEI and (2) Yunnan Province experiences periodic and seasonal drought patterns, with spring being the peak period of drought occurrence and moderate drought and light drought being the main types of drought in Yunnan Province. Therefore, we believe that ecological–geographic zoning can better adapt to geographical spatial heterogeneity characteristics, and the zonal drought monitoring model constructed can more effectively identify the actual occurrence of drought in large regions. This research finding can provide reference for the formulation of drought response policies in large-scale regions. Full article
(This article belongs to the Special Issue Drought Risk Assessment and Human Vulnerability in the 21st Century)
Show Figures

Figure 1

Back to TopTop