# Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Data and Methods

#### 2.1. Atmospheric Temperature and Acoustic Gravity Waves Evaluation

^{th}generation atmospheric data set produced by the European Centre for Medium-Range Weather Forecasts [25]. The model produces global and hourly temperature profiles with high resolution (137 different pressure levels) from near surface up to 0.01 hPa (∼80 km altitude) using observations from satellites, radiosondes, dropsondes, aircraft, and radars [25]. The horizontal resolution is ∼0.28${}^{\circ}$ in both longitude and latitude.

#### 2.2. The Vertical Total Electron Content (vTEC)

#### 2.3. China Seismo-Electromagnetic Satellite (CSES) Data

#### 2.4. Ground Magnetometer and Magnetospheric Field Line Resonance Frequency Estimation

#### 2.5. Non-Stationary Signal Decomposition and Their Multiscale Statistical Analysis: The Fast Iterative Filtering Algorithm

## 3. The Bayan 5 August 2018 Earthquake, Co-seismic Observations

#### 3.1. Acoustic Gravity Waves Observations

#### 3.2. Vertical Total Electron Content Observations

- We identified 10 days of August 2018 characterized by both low solar activity (i.e., −10 nT < Sym-H < 5 nT and $AE<100$ nT, Sym-H and AE being the geomagnetic disturbed time index [70] and Auroral Electrojet index [71], respectively) and low seismic activity (i.e., M < 2, M being the EQ magnitude) in an area of 3${}^{\circ}$× 3${}^{\circ}$ lat × lon around the EE;
- We decomposed the diurnal vTEC observations using the FIF method, which we briefly recalled in Section 2.5. The interested reader can find more details on this algorithm and its pseudo-code in [59,61] FIF code for Matlab is freely available at www.cicone.com);
- We evaluated the 10-day average relative energy spectrogram (${\overline{\u03f5}}_{rel}$) after removing the long term trend;
- ${\overline{\u03f5}}_{rel}$ is the vTEC background.

#### 3.3. Magnetospheric Field Line Resonance (FLR) Frequency Observations

## 4. The Bayan 5 August 2018 Earthquake, Pre-Seismic Observations

#### 4.1. Atmospheric Temperature Observations

#### 4.2. CSES Satellite Ionospheric Observations

- The entire electric and magnetic field dataset is divided into two subsets depending on different seismic conditions: ${M}_{L}$ defined for low seismic activity (i.e., $M\le 2$); ${M}_{H}$ defined for high seismic activity (i.e., $M>2$);
- ${M}_{L}$ and ${M}_{H}$ is divided into three groups according to the geomagnetic activity. This procedure made use of Sym-H and AE geomagnetic indices. The three subgroups correspond to low, moderate and high geomagnetic activity, namely: ${I}_{k,1}$ - Sym-H = [10 nT, −10 nT] and AE < 100 nT; ${I}_{k,2}$ - Sym-H = [−10 nT, 80 nT] and AE < 200 nT; ${I}_{k,3}$ - Sym-H $\le -80$ nT and AE ≥ 200 nT;
- A cell ${3}^{\circ}\times {3}^{\circ}$ in latitude–longitude centered over the EE, in which we evaluated the time-frequency average ${\overline{\u03f5}}_{rel}$, is selected. The mean operation is applied only if the ratio ${R}_{\u03f5}\left(f\right)=\frac{{\u03f5}_{rel}}{{\overline{\u03f5}}_{rel}}=1\pm 4\sigma \left(f\right)$, $\sigma \left(f\right)$ being the standard deviation of ${\overline{\u03f5}}_{rel}$ evaluated for each frequency scale.
- Each frequency scale showing a ${K}_{ex}$ almost null and correspondingly a relative maximum in the Shannon entropy (I) was not considered in the evaluation of the relative energy, since it can be represented as a Gaussian fluctuation characterized by high “degree of randomness”—i.e., instrumental noise [58].

## 5. Discussion

- An AGW is generated around the EE, propagating through the atmosphere;
- The AGW interacts mechanically with the ionosphere, creating a local instability in the plasma distribution through a pressure gradient. Such plasma variation put the ionosphere into a “meta-stable” state, giving rise, in the E-layer, to a local non-stationary electric current. This, in turn, generates an electromagnetic (EM) wave.
- The interaction of such EM waves with the magnetospheric field causes a change in the eigenfrequency of the field line, whose ionospheric footprint is located over the radial projection of the EE.

## 6. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

AGW | Acoustic Gravity Wave |

AE | Auroral electroject |

CSES | China-Seismo-Electromagnetic satellite |

EE | Earthquake epicenter |

EFD | Electric field Detector |

EQ | Earthquake |

FIF | Fast iterative Filtering |

FLR | Field Line Resonance |

GNSS | Global Navigation Satellite System |

IMF | Intrinsic Mode function |

LAP | Langmuir Probe |

M.I.L.C. | Magnetospheric–Ionospheric–Lithospheric Coupling |

SCM | Search-Coil Magnetometer |

TEC | Total Electron Content |

vTEC | Vertical TEC |

## References

- Hayakawa, M. Earthquake Prediction with Radio Techniques; John Wiley: Singapore, 2015. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Subionospheric VLF signal perturbations possibly related to earthquakes. J. Geophys. Res.
**1998**, 103, 17489–17504. [Google Scholar] [CrossRef] - Pulinets, S.A.; Boyarchuk, K. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Muto, F.; Horie, T.; Maekawa, S.; Hobara, Y.; Rozhnoi, A.A.; Solovieva, M.; Molchanov, O.A. A statistical study on the correlation between lower ionospheric perturbations as seen by subionospheric VLF/LF propagation and earthquakes. J. Geophys. Res.
**2010**, 115, A09305. [Google Scholar] [CrossRef] - Liu, J.Y. Earthquake precursors observed in the ionospheric F-region. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 187–204. [Google Scholar]
- Pulinets, S.A.; Ouzounov, D.P. Lithosphere–atmosphere–ionosphere coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci.
**2011**, 41, 371–382. [Google Scholar] [CrossRef] - Pulinets, S.A.; Ouzounov, D.P.; Karelin, A.V.; Davidenko, D.V. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron.
**2015**, 55, 521–538. [Google Scholar] [CrossRef] - Sorokin, V.M.; Yaschenko, A.K.; Hayakawa, M. Formation mechanism of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region. J. Atmos. Sol.-Terr. Phys.
**2006**, 68, 1260–1268. [Google Scholar] [CrossRef] - Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.; Korepanov, V. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbation. J. Atmos. Electr.
**2011**, 31, 129–140. [Google Scholar] [CrossRef][Green Version] - Miyaki, K.; Hayakawa, M.; Molchanov, O.A. The role of gravity waves in the lithosphere-ionosphere coupling, as revealed from the subionospheric LF propagation data. In Seismo Electromagnetics: Lithosphere-Atmosphere- Ionosphere Coupling; Hayakawa, M., Molchanov, O.A., Eds.; TERRAPUB: Tokyo, Japan, 2002; pp. 229–232. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M.; Miyaki, K. VLF/LF sounding of the lower ionosphere to study the role of atmospheric oscillations in the lithosphere-ionosphere coupling. Adv. Polar Upper Atmos. Res.
**2001**, 15, 146–158. [Google Scholar] - Muto, F.; Kasahara, Y.; Hobara, Y.; Hayakawa, M.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.A. Further study on the role of atmospheric gravity waves on the seismo-ionospheric perturbations as detected by subionospheric VLF/LF propagation. Nat. Hazards Earth Syst. Sci.
**2009**, 9, 1111–1118. [Google Scholar] [CrossRef][Green Version] - Freund, F. Time-resolved study of charge generation and propagation in igneous rocks. J. Geophys. Res.
**2000**, 105, 11001–11019. [Google Scholar] [CrossRef][Green Version] - Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci.
**2011**, 41, 383–400. [Google Scholar] [CrossRef] - Liperovsky, V.A.; Pokhotelov, O.A.; Meister, C.-V.; Liperovskaya, E.V. Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes. Geomagn. Aeron.
**2008**, 48, 795–806. [Google Scholar] [CrossRef] - Oyama, K.-I.; Devi, M.; Ryu, K.; Chen, C.H.; Liu, J.Y.; Liu, H.; Bankov, L.; Kodama, T. Modifications of the ionosphere prior to large earthquakes: Report from the ionospheric precursor study group. Geosci. Lett.
**2016**, 3, 6. [Google Scholar] [CrossRef][Green Version] - Hayakawa, M.; Molchanov, O.A.; Ondoh, T.; Kawai, E. The precursory signature effect of the Kobe earthquake on VLF subionospheric signals. J. Commun. Res. Lab.
**1996**, 43, 169–180. [Google Scholar] [CrossRef] - Korepanov, V.; Hayakawa, M.; Yampolski, Y.; Lizunov, G. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem. Earth Parts A B C
**2009**, 34, 485–495. [Google Scholar] [CrossRef] - Nakamura, T.; Korepanov, V.; Kasahara, Y.; Hobara, Y.; Hayakawa, M. An evidence on the lithosphere-ionosphere coupling in terms of atmospheric gravity waves on the basis of a combined analysis of surface pressure, ionospheric perturbations and ground-based ULF variations. J. Atmos. Electr.
**2013**, 33, 53–68. [Google Scholar] [CrossRef][Green Version] - Endo, T.; Kasahara, Y.; Hobara, Y.; Sue, T.; Hayakawa, M. A note on the correlation of seismo-ionospheric perturbations with ground motions as deduced from F-net seismic observations. J. Atmos. Electr.
**2013**, 33, 69–76. [Google Scholar] [CrossRef][Green Version] - Hayakawa, M.; Hobara, Y.; Yasuda, Y.; Yamaguchi, H.; Ohta, K.; Izutsu, J.; Nakamura, T. Possible precursor to the March 11, 2011, Japan earthquake: Ionospheric perturbations as seen by subionospheric very low frequency/low frequency propagation. Ann. Geophys.
**2012**, 55, 95–99. [Google Scholar] [CrossRef] - Hayakawa, M.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Ohta, K.; Izutsu, J.; Nakamura, T.; Kasahara, Y. The ionospheric precursor to the 2011 March 11 earthquake based upon observations obtained from the Japan-Pacific subionospheric VLF/LF network. Terr. Atmos. Ocean. Sci.
**2013**, 24, 393–408. [Google Scholar] [CrossRef][Green Version] - Hayakawa, M.; Rozhnoi, A.; Solovieva, M.; Hobara, Y.; Ohta, K.; Schekotov, A.; Fedorov, E. The lower ionospheric perturbation as a precursor to the 11 March 2011 Japan earthquake. Geomatics. Nat. Hazards Risk
**2013**, 4, 275–287. [Google Scholar] [CrossRef][Green Version] - Kamiyama, M.; Sugito, M.; Kuse, M.; Schekotov, A.; Hayakawa, M. On the precursors to the 2011 Tohoku earthquake: Crustal movements and electromagnetic signatures. Geomat. Nat. Hazards Risk
**2014**, 7, 471–492. [Google Scholar] [CrossRef][Green Version] - Hennermann, K. ERA5 Data Documentation. In Copernicus Knowledge Base. 2017. Available online: https://confluence.ecmwf.int/display/CKB/ERA5+data+documentation (accessed on 19 October 2017).
- De la Torre, A.; Alexander, P.; Giraldez, A. The kinetic to potential energy ratio and spectral separability from high-resolution balloon soundings near the Andes Mountains. Geophys. Res. Lett.
**1999**, 26, 1413–1416. [Google Scholar] [CrossRef] - VanZandt, T.E. A model for gravity wave spectra observed by Doppler sounding systems. Radio Sci.
**1985**, 20, 1323–1330. [Google Scholar] [CrossRef][Green Version] - Yang, S.-S.; Pan, C.J.; Das, U.; Lai, H.C. Analysis of synoptic scale controlling factors in the distribution of gravity wave potential energy. J. Atmos. Sol. Terr. Phys.
**2015**, 135, 126–135. [Google Scholar] [CrossRef] - Yang, S.-S.; Asano, T.; Hayakawa, M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res. Space Phys.
**2019**, 124. [Google Scholar] [CrossRef] - Mannucci, A.J.; Wilson, B.D.; Yuan, D.N.; Ho, C.H.; Lindqwister, U.J.; Runge, T.F. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci.
**1998**, 33, 565. [Google Scholar] [CrossRef] - Shen, X.H.; Zhang, X.M.; Yuan, S.G.; Wang, L.W.; Cao, J.B.; Huang, J.P.; Zhu, X.H.; Piergiorgio, P.; Dai, J.P. The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci.
**2018**, 61, 634–642. [Google Scholar] [CrossRef] - Zhou, B.; Yang, Y.Y.; Zhang, Y.T.; Gou, X.C.; Cheng, B.J.; Wang, J.D.; Li, L. Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys.
**2018**, 2, 455–461. [Google Scholar] [CrossRef] - Wang, Q.; Huang, J.; Zhang, X.; Shen, X.; Yuan, S.; Zeng, L.; Cao, J. China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results. Earth Planet. Phys.
**2018**, 2, 462–468. [Google Scholar] [CrossRef] - Huang, J.P.; Lei, J.G.; Li, S.X.; Zeren, Z.M.; Li, C.; Zhu, X.H.; Yu, W.H. The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results. Earth Planet. Phys.
**2018**, 2, 469–478. [Google Scholar] [CrossRef] - Yan, R.; Guan, Y.B.; Shen, X.H.; Huang, J.P.; Zhang, X.M.; Liu, C.; Liu, D.P. The Langmuir Probe onboard CSES: Data inversion analysis method and first results. Earth Planet. Phys.
**2018**, 2, 479–488. [Google Scholar] [CrossRef] - Liu, C.; Guan, Y.; Zheng, X.; Zhang, A.; Piero, D.; Sun, Y. The technology of space plasma in-situ measurement on the china seismo-electromagnetic satellite. Sci. China Technol. Sci.
**2019**, 62, 829–838. [Google Scholar] [CrossRef] - Li, X.; Xu, Y.B.; An, Z.H.; Liang, X.H.; Wang, P.; Zhao, X.Y.; Nan, Y.F. The high-energy particle package on-board CSES. Radiat. Detect. Technol. Methods
**2019**, 669–677. [Google Scholar] [CrossRef] - Picozza, P.; Battiston, R.; Ambrosi, G.; Bartocci, S.; Basara, L.; Burger, W.J.; Campana, D.; Carfora, L.; Casolino, M.; Castellini, G.; et al. Scientific Goals and In-orbit Performance of the High-energy Particle Detector on Board. Astrophys. J. Suppl. Ser.
**2019**, 243. [Google Scholar] [CrossRef] - Lin, J.; Shen, X.H.; Hu, L.C.; Wang, L.W.; Zhu, F.Y. CSES GNSS ionospheric inversion technique, validation and error analysis. Sci. China Technol. Sci.
**2018**, 61, 669–677. [Google Scholar] [CrossRef] - Chen, L.; Ou, M.; Yuan, Y.P.; Sun, F.; Yu, X.; Zhen, W.M. Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1. Earth Planet. Phys.
**2018**, 2, 505–514. [Google Scholar] [CrossRef] - Baransky, L.N.; Borovkov, J.E.; Gokhberg, M.B.; Krylov, S.M.; Troitskaya, V.A. High resolutionm ethodo f direct measuremenot f the magneticf ield lines’ eigenfrequencies. Planet. Space Sci.
**1985**, 33, 1369. [Google Scholar] [CrossRef] - Piersanti, M.; Alberti, T.; Bemporad, A.; Berrilli, F.; Bruno, R.; Capparelli, V.; Carbone, V.; Cesaroni, C.; Consolini, G.; Cristaldi, A.; et al. Comprehensive analysis of the geoeffective solar event of 21 June 2015: Effects on the magnetosphere, plasmasphere, and ionosphere systems. Sol. Phys.
**2017**, 292, 169. [Google Scholar] [CrossRef] - Vellante, M.; Piersanti, M.; Pietropaolo, E. Comparison of equatorial plasma mass densities deduced from field line resonances observed at ground for dipole and IGRF models. J. Geophys. Res. Space Phys.
**2014**, 119. [Google Scholar] [CrossRef] - Waters, C.L.; Menk, F.W.; Fraser, B.J. The resonance structure of low latitude Pc3 geomagnetic pulsations. Geophys. Res. Lett.
**1991**, 18, 2293. [Google Scholar] [CrossRef][Green Version] - Menk, F.W.; Mann, I.R.; Smith, A.J.; Waters, C.L.; Clilverd, M.A.; Milling, D.K. Monitoring the plasmapause using geomagnetic field line resonances. J. Geophys. Res.
**2004**, 109, A04216. [Google Scholar] [CrossRef][Green Version] - Menk, F.W.; Waters, C.L. Magnetoseismology: Ground-Based Remote Sensing of Earth’s Magnetosphere; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Menk, F.W.; Waters, C.L.; Fraser, B.J. Field line resonances and waveguide modes at low latitudes: 1. Observations. J. Geophys. Res.
**2000**, 105, 7747–7761. [Google Scholar] [CrossRef] - Fenrich, F.R.; Samson, J.C.; Sofko, G.; Greenwald, R.A. ULF high- and low-m field line resonances observed with the Super Dual Auroral Radar Network. J. Geophys. Res.
**1995**, 100, 21535–21547. [Google Scholar] [CrossRef] - Sugiura, M.; Wilson, C. Oscillation of the geomagnetic field lines and associated magnetic perturbations at conjugate points. J. Geophys. Res.
**1964**, 69, 1211–1216. [Google Scholar] [CrossRef] - Ziesolleck, C.W.S.; Fraser, B.J.; Menk, F.W.; McNabb, P.W. Spatial characteristics of low-latitude Pc3–4 geomagnetic pulsations. J. Geophys. Res.
**1993**, 98, 197–207. [Google Scholar] [CrossRef] - Flandrin, P. Time-Frequency/Time-Scale Analysis; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soci. Lond. Ser. A Math. Phys. Eng. Sci.
**1998**, 454, 903. [Google Scholar] [CrossRef] - Cicone, A.; Garoni, C.; Serra-Capizzano, S. Spectral and convergence analysis of the Discrete ALIF method. Linear Algebra Appl.
**2019**, 580, 62–95. [Google Scholar] [CrossRef] - Stallone, A.; Cicone, A.; Materassi, M.; Zhou, H. New insights and best practices for the successful use of Empirical Mode Decomposition, Iterative Filtering and derived algorithms. Sci. Rep.
**2020**, 10, 15161. [Google Scholar] [CrossRef] - Lin, L.; Wang, Y.; Zhou, H. Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal.
**2009**, 1, 543–560. [Google Scholar] [CrossRef] - Cicone, A.; Liu, J.; Zhou, H. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl. Comput. Harmon. Anal.
**2016**, 41, 384–411. [Google Scholar] [CrossRef][Green Version] - Cicone, A.; Zhou, H. Multidimensional iterative filtering method for the decomposition of high-dimensional non-stationary signals. Numer. Math. Theory Methods Appl.
**2017**, 10, 278–298. [Google Scholar] [CrossRef][Green Version] - Piersanti, M.; Materassi, M.; Cicone, A.; Spogli, L.; Zhou, H.; Ezquer, R.G. Adaptive local iterative filtering: A promising technique for the analysis of nonstationary signals. J. Geophys. Res. Space Phys.
**2018**, 123. [Google Scholar] [CrossRef][Green Version] - Cicone, A. Iterative Filtering as a direct method for the decomposition of nonstationary signals. Numer. Algorithms
**2020**, 1–17. [Google Scholar] [CrossRef][Green Version] - Cicone, A.; Dell’Acqua, P. Study of boundary conditions in the Iterative Filtering method for the decomposition of nonstationary signals. J. Comput. Appl. Math.
**2019**, 373, 112248. [Google Scholar] [CrossRef][Green Version] - Cicone, A.; Zhou, H. Iterative Filtering algorithm numerical analysis with new efficient implementations based on FFT. arXiv
**2020**, arXiv:1802.01359. [Google Scholar] - Wernik, A.W. Wavelet transform of nonstationary ionospheric scintillation. Acta Geophys. Pol.
**1997**, XLV, 237–253. [Google Scholar] - Alberti, T.; Piersanti, M.; Vecchio, A.; De Michelis, P.; Lepreti, F.; Carbone, V.; Primavera, L. Identification of the different magnetic field contributions during a geomagnetic storm in magnetospheric and ground observations. Ann. Geophys.
**2016**, 34, 1069–1084. [Google Scholar] [CrossRef][Green Version] - Strumik, M.; Macek, W.M. Testing for Markovian character and modeling of intermittency in solar wind turbulence. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
**2008**, 78, 026414. [Google Scholar] [CrossRef][Green Version] - Frisch, U. Turbulence, the Legacy of A. N. Kolmogorov; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Tsuda, T.; Murayama, Y.; Nakamura, T.; Vincent, R.A.; Manson, A.H.; Meek, C.E.; Wilson, R.L. Variations of the gravity wave characteristics with height, season and latitude revealed by comparative observations. J. Atmos. Terr. Phys.
**1994**, 56, 555–568. [Google Scholar] [CrossRef] - Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R.H. A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res.
**2000**, 105, 7257–7273. [Google Scholar] [CrossRef] - Gokhberg, M.B.; Shalimov, S.L. Influence of Earthquakes and Explosions on the Ionosphere; Institute of Physics of the Earth of the Russian Academy of Sciences: Moscow, Russia, 2004. [Google Scholar]
- Mareev, E.A.; Iudin, D.I.; Molchanov, O.A. Mosaic source of internal gravity waves associated with seismic activity. In Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Hayakawa, M., Molchanov, O.A., Eds.; TERRAPUB: Tokyo, Japan, 2002; pp. 335–342. [Google Scholar]
- Wanliss, J.A.; Showalter, K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res.
**2006**, 111, A02202. [Google Scholar] [CrossRef] - Davis, T.N.; Sugiura, M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res.
**1966**, 71, 785–801. [Google Scholar] [CrossRef][Green Version] - Galav, P.; Dashora, N.; Sharma, S.; Pandey, R. Characterization of low latitude GPS-TEC during very low solar activity phase. J. Atmos. Sol.-Terr. Phys.
**2010**, 72, 1309–1317. [Google Scholar] [CrossRef] - Bertello, I.; Piersanti, M.; Candidi, M.; Diego, P.; Ubertini, P. Electromagnetic field observations by the DEMETER satellite in connection with the L’Aquila earthquake. Ann. Geophys.
**2018**, 36, 1483–1493. [Google Scholar] [CrossRef][Green Version] - Nickolaenko, A.P.; Hayakawa, M. Resonances in the Earth-Ionosphere Cavity; Kluwer Academic: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Tsurutani, B.T.; Park, S.A.; Falkowski, B.J.; Lakhina, G.S.; Pickett, J.S.; Bortnik, J.; Hospodarsky, G.; Santolik, O.; Parrot, M.; Henri, P.; et al. Plasmaspheric hiss: Coherent and intense. J. Geophys. Res. Space Phys.
**2018**, 123, 10009–10029. [Google Scholar] [CrossRef] - Malaspina, D.M.; Ripoll, J.-F.; Chu, X.; Hospodarsky, G.; Wygant, J. Variation in plasmaspheric hiss wave power with plasma density. Geophys. Res. Lett.
**2018**, 45, 9417–9426. [Google Scholar] [CrossRef] - Pezzopane, M.; Del Corpo, A.; Piersanti, M.; Cesaroni, C.; Pignalberi, A.; Di Matteo, S.; Spogli, L.; Vellante, M.; Heilig, B. On some features characterizing the plasmasphere–magnetosphere–ionosphere system during the geomagnetic storm of 27 May 2017. Earth Planets Space
**2019**, 71, 77. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhima, Z.; Huang, J.; Shen, X.; Xia, Z.; Chen, L.; Piersanti, M.; Yang, Y.; Wang, Q.; Zeng, L.; Lei, J.; et al. Simultaneous observations of ELF/VLF rising-tone quasiperiodic waves and energetic electron precipitations in the high-latitude upper ionosphere. J. Geophys. Res. Space Phys.
**2020**, 125, e2019JA027574. [Google Scholar] [CrossRef] - Chum, J.; Santolik, O.; Parrot, M. Analysis of subprotonospheric whistlers observed by DEMETER: A case study. J. Geophys. Res.
**2009**, 114, A02307. [Google Scholar] [CrossRef][Green Version] - Aakjær, C.D.; Olsen, N.; Finlay, C. Determining polar ionospheric electrojet currents from Swarm satellite constellation magnetic data. Earth Plan. Space
**2016**, 68, 140. [Google Scholar] [CrossRef][Green Version] - Campos, L.M.B.C. On three-dimensional acoustic-gravity waves in model non-isothermal atmospheres. Wave Motion
**1983**, 5, 1–14. [Google Scholar] [CrossRef] - Achenbach, J.D. Wave Propagation in Elastic Solids; Elsevier: New York, NY, USA, 1984. [Google Scholar]
- Lamb, H. On Waves in an Elastic Plate. Proc. R. Soc. Lond. Ser. A
**1917**, 93, 114–128. [Google Scholar] - Godin, O.A. Wentzel-Kramers-Brillouin approximation for atmospheric waves. J. Fluid Mech.
**2015**, 777, 260–290. [Google Scholar] [CrossRef] - Piersanti, M.; Cesaroni, C.; Spogli, L.; Alberti, T. Does TEC react to a sudden impulse as a whole? The 2015 Saint Patrick’s day storm event. Adv. Space Res.
**2017**, 60, 1807–1816. [Google Scholar] [CrossRef] - Berube, D.; Moldwin, M.B.; Ahn, M. Computing magnetospheric mass density from field line resonances in a realistic magnetic field geometry. J. Geophys. Res.
**2006**, 111, A08206. [Google Scholar] [CrossRef][Green Version] - Menk, F.W.; Kale, Z.; Sciffer, M.; Robinson, P.; Waters, C.L.; Grew, R.; Clilverd, M.; Mann, I. Remote sensing the plasmasphere, plasmapause, plumes and other features using ground-based magnetometers. J. Space Weather Space Clim.
**2014**, 4, A34. [Google Scholar] [CrossRef][Green Version] - Rankin, R.; Tikhonchuk, V.T. Dispersive shear Alfvén waves on model Tsyganenko magnetic field lines. Adv. Space Res.
**2001**, 28, 1595. [Google Scholar] [CrossRef] - Singer, H.J.; Southwood, D.J.; Walker, R.J.; Kivelson, M.G. Alfven wave resonances in a realistic magnetospheric magnetic field geometry. J. Geophys. Res.
**1981**, 86, 4589. [Google Scholar] [CrossRef][Green Version] - Vellante, M.; Piersanti, M.; Heilig, B.; Reda, J.; Del Corpo, A. Magnetospheric plasma density inferred from field line resonances: Effects of using different magnetic field models. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Waters, C.L.; Samson, J.C.; Donovan, E.F. Variation of plasmatrough density derived from magnetospheric field line resonances. J. Geophys. Res.
**1996**, 101, 24737–24745. [Google Scholar] [CrossRef] - Waters, C.L.; Kabin, K.; Rankin, R.; Donovan, E.; Samson, J.C. Effects of the magnetic field model and wave polarisation on the estima-tion of proton number densities in the magnetosphere. Planet. Space Sci.
**2006**. [Google Scholar] [CrossRef] - Warner, M.R.; Orr, D. Time of flight calculations for high latitude geomagnetic pulsations. Planet. Space Sci.
**1979**, 27, 679. [Google Scholar] [CrossRef] - Piersanti, M.; Villante, U.; Waters, C.; Coco, I. The 8 June 2000 ULF wave activity: A case study. J. Geophys. Res.
**2012**, 117, A02204. [Google Scholar] [CrossRef][Green Version] - Gokhberg, M.B.; Nekrasov, A.K.; Shalimov, S.L. Influence of unstable outputs of greenhouse gases on the ionosphere in seismically active regions. Izv. Phys. Solid Earth
**1996**, 32, 679–682. [Google Scholar] - Fritts, D.C.; Nastrom, G.D. Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci.
**1992**, 49, 111–127. [Google Scholar] [CrossRef][Green Version] - Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys.
**2003**, 41, 1003. [Google Scholar] [CrossRef][Green Version] - Abdu, M.A. Equatorial F region irregularities. In The Dynamical Ionosphere; Materassi, M., Forte, B., Coster, A.J., Skone, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 169–178. ISBN 9780128147825. [Google Scholar] [CrossRef]
- Matsushita, S.; Maeda, H. On the geomagnetic quiet daily variation field during the IGY. J. Geophys. Res.
**1965**, 70, 2535–2558. [Google Scholar] [CrossRef]

**Figure 1.**Co-seismic vertical profiles of: (

**a**) temperature; (

**b**) background temperature; (

**c**) temperature deviation; (

**d**) square term of $Brunt-V\ddot{a}is\ddot{a}l\ddot{a}$ frequency; (

**e**) potential energy at 12:00 UT on 5 August 2018. Red horizontal dashed lines represent the AGW peaks identified; the green horizontal dashed line identify the tropopause peak.

**Figure 2.**Co-seismic ${E}_{P}$ maps from 3 to 5 August 2018. The date and altitude are indicated in each panel (

**a**–

**c**). The earthquake epicenter is marked by a black dot.

**Figure 3.**vTEC relative energy spectrogram evaluated over the earthquake epicenter. Panel (

**a**) vTEC relative energy background for solar quiet conditions for August 2018; panel (

**b**) vTEC relative energy evaluated on 5 August 2018. Colors are representative of the ${\u03f5}_{rel}$ values. The yellow dashed line represents the time of the earthquake occurrence.

**Figure 4.**The cross-phase dynamical spectrogram between two low-latitude ground stations near the earthquake epicenter (GNG-LRM; GNG: $\lambda =31.{36}^{\circ}$ S and $\varphi =115.{71}^{\circ}$E; LRM: $\lambda =22.{22}^{\circ}$S and $\varphi =114.{1}^{\circ}$E). Each spectrum has been evaluated over a 1 h interval. Spectra have been smoothed both in time and frequency domains (7 frequency bands and 15 temporal bands). The green vertical line represents the earthquake occurrence time. The red vertical line represents the occurrence time of the first FLR frequency decrease. $\Delta \psi $ in the color-bar represents the phase difference in degrees between the equatorward (LRM) and poleward (GNG) ground magnetometer.

**Figure 5.**Pre-seismic vertical profiles of: (

**a**) temperature; (

**b**) background temperature; (

**c**) temperature deviation; (

**d**) square term of $Brunt-V\ddot{a}is\ddot{a}l\ddot{a}$ frequency; (

**e**) potential energy 6:00 UT on 5 August 2018. Red horizontal dashed lines represent the AGW peaks identified; the green horizontal dashed line identify the tropopause peak.

**Figure 6.**Pre-seismic ${E}_{P}$ maps from 3 to 5 August 2018. The date and altitude are indicated in each panel (

**a**–

**c**). The earthquake epicenter is marked by a black dot.

**Figure 7.**CSES satellite Electric Field detector observations. Box (

**A**) Environmental background evaluated over the earthquake epicenter in terms of ${\overline{\u03f5}}_{rel}$ vs. time and frequency for the reference quiet condition ($M\le 2$; Sym-H = [10 nT, −10 nT]; AE < 100 nT) for the three components of the electric field; Box (

**B**) ${\u03f5}_{rel}$ evaluated over the earthquake epicenter on 5 August 2018 for the three components of the electric field. Magenta and red vertical dashed lines represent anomalous peaks at ∼180 Hz and at ∼630, respectively. Colors are representative of the ${\u03f5}_{rel}$ values.

**Figure 8.**CSES satellite Search Coil Magnetometer observations. Box (

**A**) Environmental background evaluated over the earthquake epicenter in terms of ${\overline{\u03f5}}_{rel}$ vs. time and frequency for the reference quiet condition ($M\le 2$; Sym-H = [10 nT, −10 nT]; AE < 100 nT) for the three components of the magnetic field; Box (

**B**) ${\u03f5}_{rel}$ evaluated over the earthquake epicenter on 5 August 2018 for the three components of the magnetic field. Magenta vertical dashed lines represent anomalous peaks at ∼180 Hz. Colors are representative of the ${\u03f5}_{rel}$ values.

**Figure 9.**CSES satellite LAP observations. Panel (

**a**) Ionospheric plasma density: blue line is the observations for the entire 5 August 2018 orbit; red dashed line is baseline; black line represents the plasma density fluctuations; Panel (

**b**) environmental background evaluated over the earthquake epicenter in terms of ${\overline{\u03f5}}_{rel}$ vs. time and frequency for the reference quiet condition ($M\le 2$; Sym-H = [10 nT, −10 nT]; AE < 100 nT); panel (

**c**) ${\u03f5}_{rel}$ evaluated over the earthquake epicenter on 5 August 2018; panel (

**d**) plasma density anomaly ($\rho *$) obtained by the superposition of the two frequency components, ${T}_{1}=67\pm 1$ s and ${T}_{2}=111\pm 1$ s. Orange horizontal dashed line represents the time at which the satellite flew over the EE position. Colors in panels (

**b**,

**c**) are representative of the ${\u03f5}_{rel}$ values.

**Figure 11.**Behavior of the FLR eigen-frequency as modeled by an atmospheric pressure gradient caused by a seismic event.

**Table 1.**Geographic location of the International GNSS Service stations used for the vTEC evaluation.

Site | City | Country | Latitude | Longitude |
---|---|---|---|---|

ALIC00AUS | Alice Springs | Australia | −23.67${}^{\circ}$ | 133.89${}^{\circ}$ |

BAKO00IDN | Cibinong | Indonesia | −6.49${}^{\circ}$ | 106.85${}^{\circ}$ |

BNOA00IDN | Benoa | Indonesia | −8.7465${}^{\circ}$ | 115.21${}^{\circ}$ |

BTNG00IDN | Bitung | Indonesia | 1.4389${}^{\circ}$ | 125.19${}^{\circ}$ |

CIBG00IDN | Cibinong | Indonesia | −6.4904${}^{\circ}$ | 106.85${}^{\circ}$ |

DARW00AUS | Darwin | Australia | −12.8437${}^{\circ}$ | 131.13${}^{\circ}$ |

JOG200IDN | Yogyakarta | Indonesia | −7.7638${}^{\circ}$ | 110.37${}^{\circ}$ |

KAT100AUS | Katherine | Australia | −14.3760${}^{\circ}$ | 132.15${}^{\circ}$ |

MRO100AUS | Boolardy Station | Australia | −26.6966${}^{\circ}$ | 116.64${}^{\circ}$ |

NTUS00SGP | Singapore | Singapore | 1.3458${}^{\circ}$ | 103.68${}^{\circ}$ |

PGEN00PHL | General Santos City | Philippines | 6.0649${}^{\circ}$ | 125.13${}^{\circ}$ |

PPPC00PHL | Puerto Princesa City | Philippines | 9.7729${}^{\circ}$ | 118.74${}^{\circ}$ |

XMIS00AUS | Christmas Island | Australia | −10.4499${}^{\circ}$ | 105.69${}^{\circ}$ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Piersanti, M.; Materassi, M.; Battiston, R.; Carbone, V.; Cicone, A.; D’Angelo, G.; Diego, P.; Ubertini, P. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. *Remote Sens.* **2020**, *12*, 3299.
https://doi.org/10.3390/rs12203299

**AMA Style**

Piersanti M, Materassi M, Battiston R, Carbone V, Cicone A, D’Angelo G, Diego P, Ubertini P. Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake. *Remote Sensing*. 2020; 12(20):3299.
https://doi.org/10.3390/rs12203299

**Chicago/Turabian Style**

Piersanti, Mirko, Massimo Materassi, Roberto Battiston, Vincenzo Carbone, Antonio Cicone, Giulia D’Angelo, Piero Diego, and Pietro Ubertini. 2020. "Magnetospheric–Ionospheric–Lithospheric Coupling Model. 1: Observations during the 5 August 2018 Bayan Earthquake" *Remote Sensing* 12, no. 20: 3299.
https://doi.org/10.3390/rs12203299