Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data: CGLS LAI
2.3. PhenoCam Data
2.4. FLUXNET Data
2.5. Methods for Estimating Vegetation Phenology
2.6. Validation Approach
3. Results
3.1. Comparison of Satellite and Ground Phenologies
3.2. Latitudinal Gradients of Satellite and Ground-Based Phenology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chimielewski, F.M.; Rotzae, T. Response of tree phenology to climate change across Europe. Agr. For. Meteorol. 2001, 108, 101–112. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Responses to a warming world. Science 2001, 294, 793–795. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Özdoğan, M.; Richardson, A.D.; Radeloff, V.C. Phenology from Landsat when data is scarce: Using MODIS and Dynamic Time-Warping to combine multi-year Landsat imagery to derive annual phenology curves. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 72–83. [Google Scholar] [CrossRef]
- White, K.; Pontius, J.; Schaberg, P. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty. Remote Sens. Environ. 2014, 148, 97–107. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.M. Deriving a new phenological indicator of interannual net carbon exchange in contrasting boreal deciduous and evergreen forests. Ecol. Indic. 2013, 24, 113–119. [Google Scholar] [CrossRef]
- Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, G.M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J. Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery. Agric. For. Meteorol. 2018, 256, 137–149. [Google Scholar] [CrossRef]
- De Beurs, K.; Henebry, G. Spatio-temporal statistical methods for modelling land surface phenology. In Phenological Research: Methods for Environmental and Climate Change Analysis; Hudson, I., Keatley, M., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 177–208. [Google Scholar]
- Reed, B.C.; White, M.; & Brown, J.F. Remote sensing phenology. In Phenology: An integrative Enviormental Science; Schwartz, M.D., Ed.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 2003; pp. 365–381. [Google Scholar]
- Atzberger, C.; Klisch, A.; Mattiuzzi, M.; Vuolo, F. Phenological metrics derived over the European continent from NDVI3g data and MODIS time series. Remote. Sens. 2013, 6, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Verger, A.; Filella, I.; Baret, F.; Peñuelas, J. Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens. Environ. 2016, 178, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Reed, B.C.; Brown, J.F.; Vanderzee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Tateishi, R.; Ebata, M. Analysis of phenological change patterns using 1982–2000 Advanced Very High-Resolution Radiometer (AVHRR) data. Int. J. Remote Sens. 2004, 25, 2287–2300. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Digan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O′Keefe, J.; Zhang, G.; Nemani, R.R.; Van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Piao, S.; Friedlingstein, P.; Ciais, P.; Zhou, L.; Chen, A. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophys. Res. Lett. 2006, 33, 23402. [Google Scholar] [CrossRef] [Green Version]
- De Beurs, K.M.; Henebry, G.M. Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects. Glob. Chang. Boil. 2005, 11, 779–790. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote. Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Bórnez-Mejías, K.; Descals, A.; Verger, A.; Peñuelas, J. Land surface phenology from VEGETATION and PROBA-V data. Assessment over deciduous forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101974. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Hanes, J.M. Intercomparing multiple measures of the onset of spring in eastern North America. Int. J. Clim. 2009, 30, 1614–1626. [Google Scholar] [CrossRef]
- Menzel, A. Phenology: Its importance to the global change community. Clim. Chang. 2002, 54, 379–385. [Google Scholar] [CrossRef]
- Denny, E.; Gerst, K.L.; Miller-Rushing, A.J.; Tierney, G.L.; Crimmins, T.M.; Enquist, C.A.F.; Guertin, P.; Rosemartin, A.H.; Schwartz, M.D.; Thomas, K.A.; et al. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. Int. J. Biometeorol. 2014, 58, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Templ, B.; Koch, E.; Bolmgren, K.; Ungersböck, M.; Paul, A.; Scheifinger, H.; Rutishauser, T.; Busto, M.; Chmielewski, F.-M.; Hajkova, L.; et al. Pan European Phenological database (PEP725): A single point of access for European data. Int. J. Biometeorol. 2018, 62, 1109–1113. [Google Scholar] [CrossRef]
- Tierney, G.; Mitchell, B.; Miller-Rushing, A.; Katz, J.; Denny, E.; Brauer, C.; Donovan, T.; Richardson, A.; Toomey, M.; Kozlowski, A.; et al. Phenology Monitoring Protocol: Northeast Temperate Network; Technical Report No. NPS/NETN//NRR-2013/681; National Park Service: Fort Collins, CO, USA, 2013; p. 254.
- Jacobs, N.; Burgin, W.; Fridrich, N.; Abrams, A.; Miskell, K.; Braswell, B.; Richardson, A.D.; Pless, R. The global network of outdoor webcams: Properties and applications. In Proceedings of the 17th ACM International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November 2009; pp. 111–120. [Google Scholar] [CrossRef]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.-L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Braswell, B.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Hufkens, K.; Basler, D.; Milliman, T.; Melaas, E.K.; Richardson, A.D. An integrated phenology modelling framework in R. Methods Ecol. Evol. 2018, 9, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Keenan, T.F.; Darby, B.; Felts, E.; Sonnentag, O.; Friedl, M.A.; Hufkens, K.; O’Keefe, J.; Klosterman, S.; Munger, J.W.; Toomey, M.; et al. Tracking forest phenology and seasonal physiology using digital repeat photography: A critical assessment. Ecol. Appl. 2014, 24, 1478–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufkens, K.; Friedl, M.A.; Keenan, T.F.; Sonnentag, O.; Bailey, A.; O’Keefe, J.; Richardson, A.D. Ecological impacts of a widespread frost event following early spring leaf-out. Glob. Chang. Boil. 2012, 18, 2365–2377. [Google Scholar] [CrossRef]
- Bater, C.W.; Coops, N.C.; Wulder, M.A.; Nielsen, S.E.; McDermid, G.J.; Stenhouse, G. Design and installation of a camera network across an elevation gradient for habitat assessment. Instrum. Sci. Technol. 2011, 39, 231–247. [Google Scholar] [CrossRef]
- Brown, T.; Hultine, K.R.; Steltzer, H.; Denny, E.; Denslow, M.; Granados, J.; Henderson, S.; Moore, D.J.P.; Nagai, S.; San Clements, M.; et al. Using phenocams to monitor our changing Earth: Toward a global phenocam network. Front. Ecol. Environ. 2016, 14, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Laskin, D.N.; McDermid, G.J. Evaluating the level of agreement between human and time-lapse camera observations of understory plant phenology at multiple scales. Ecol. Informatics 2016, 33, 1–9. [Google Scholar] [CrossRef]
- Morisette, J.T.; Richardson, A.D.; Knapp, A.K.; I Fisher, J.; A Graham, E.; Abatzoglou, J.T.; E Wilson, B.; Breshears, D.D.; Henebry, G.M.; Hanes, J.M.; et al. Tracking the rhythm of the seasons in the face of global change: Phenological research in the 21st century. Front. Ecol. Environ. 2009, 7, 253–260. [Google Scholar] [CrossRef] [Green Version]
- PhenoCam Dataset v1.0 Used in This Study Is Publicly Available through the ORNL DAAC. Available online: https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V1.html (accessed on 12 July 2020).
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.F.; Klosterman, S.T.; Kosmala, M.; et al. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Sci. Data 2018, 5, 180028. [Google Scholar] [CrossRef]
- Melaas, E.; Friedl, M.A.; Richardson, A.D. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Glob. Chang. Biol. 2016, 22, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; LaVine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 2018, 8, 5679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrends, H.; Etzold, S.; Kutsch, W.; Stoeckli, R.; Bruegger, R.; Jeanneret, F.; Wanner, H.; Buchmann, N.; Eugster, W. Tree phenology and carbon dioxide fluxes: Use of digital photography for process-based interpretation at the ecosystem scale. Clim. Res. 2009, 39, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Gonsamo, A.; Chen, J.M.; Price, D.T.; A Kurz, W.; Wu, C. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.; D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 2013, 29, 203–207. [Google Scholar] [CrossRef]
- Noormets, A.; Chen, J.; Gu, L.; Desai, A.R. The phenology of gross ecosystem productivity and ecosystem respiration in temperate hard-wood and conifer chronosequences. In Phenology of Ecosystem Processes: Applications in Global Change Research; Noormets, A., Ed.; Springer: New York, NY, USA, 2009; pp. 58–85. [Google Scholar]
- Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Boil. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef] [Green Version]
- FLUXNET Data. Available online: http://fluxnet.fluxdata.org//data/fluxnet2015-dataset/ (accessed on 10 July 2020).
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C.J. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote. Sens. 2018, 10, 1346. [Google Scholar] [CrossRef] [Green Version]
- Hollinger, D.Y.; Richardson, A.D. Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol. 2005, 25, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, Q.; Hollinger, D.; Aber, J.; Moore, B. Modeling gross primary production of an evergreen needleleaf forest using MODIS and climate data. Ecol. Appl. 2005, 15, 954–969. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, J.; Yan, H.; Wu, W.; Biradar, C. Land surface phenology. In Phenology of Ecosystem Processes; Noormets, A., Ed.; Springer: New York, NY, USA, 2009; pp. 247–270. [Google Scholar]
- Yan, D.; Scott, R.; Moore, D.; Biederman, J.; Smith, W. Understanding the relationship between vegetation greenness and productivity across dryland ecosystems through the integration of PhenoCam, satellite, and eddy covariance data. Remote Sens. Environ. 2019, 223, 50–62. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- C3S Global Land Cover Map. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download.php (accessed on 18 July 2020).
- CGLS LAI V2 Data. Available online: https://land.copernicus.eu/global/themes/vegetation (accessed on 8 July 2020).
- Verger, A.; Baret, F.; Weiss, M. Near Real-Time Vegetation Monitoring at Global Scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3473–3481. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Weiss, M. Algorithm Theoretical Basis Document: LAI, FAPAR, FCOVER Collection 1km, Version 2, Issue I1.41. 2019. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/CGLOPS1_ATBD_LAI1km-V2_I1.41.pdf (accessed on 10 July 2020).
- Verger, A.; Baret, F.; Weiss, M. Performances of neural networks for deriving LAI estimates from existing CYCLOPES and MODIS products. Remote. Sens. Environ. 2008, 112, 2789–2803. [Google Scholar] [CrossRef]
- Richardson, A.D.; Milliman, T.; Hufkens, K.; Aubrecht, D.M.l; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.; Klosterman, S.T.; Kosmala, M.; et al. PhenoCam Dataset v1.0: Vegetation Phenology from Digital Camera Imagery, 2000–2015; ORNL Distributed Active Archive Center: Washington, DC, USA, 2017.
- Sonnentag, O.; Hufkens, K.; Teshera, C.; Young, A.M.; Fiedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Vuichard, N.; Papale, D. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis. Earth Syst. Sci. Data 2015, 7, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Wu, C.; Peng, D.; Soudani, K.; Siebicke, L.; Gough, C.M.; Arain, M.A.; Bohrer, G.; LaFleur, P.M.; Peichl, M.; Gonsamo, A.; et al. Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agric. For. Meteorol. 2017, 233, 171–182. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Change Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.; Strahler, A.H. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob. Change Biol. 2004, 10, 1133–1145. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Dash, J.; Atkinson, P.M. Characterising the land surface phenology of Europe using decadal MERIS data. Remote. Sens. 2015, 7, 9390–9409. [Google Scholar] [CrossRef] [Green Version]
- Massman, W.J.; Lee, X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric. For. Meteorol. 2002, 113, 121–144. [Google Scholar] [CrossRef]
- Morgenstern, K.; Black, T.A.; Humphreys, E.; Griffis, T.J.; Drewitt, G.B.; Cai, T.; Nesic, Z.; Spittlehouse, D.L.; Livingston, N.J. Sensitivity and uncertainty of the carbon balance of a Pacific Northwest Douglas-fir forest during an El Niño/La Niña cycle. Agric. For. Meteorol. 2004, 123, 201–219. [Google Scholar] [CrossRef]
- Baldocchi, D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Change Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Lee, G.; Jeon, S.; Song, Y.; Kimm, H. Monitoring multi-layer canopy spring phenology of temperate deciduous and evergreen forests using low-cost spectral sensors. Remote Sens. Environ. 2014, 149, 227–238. [Google Scholar] [CrossRef]
- Richardson, A.D.; Bailey, A.S.; Denny, E.; Martin, C.W.; O’Keefe, J. Phenology of a northern hardwood forest canopy. Glob. Change. Biol. 2006, 12, 1174–1188. [Google Scholar] [CrossRef] [Green Version]
- Garrity, S.R.; Bohrer, G.; Maurer, K.D.; Mueller, K.L.; Vogel, C.S.; Curtis, P.S. A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange. Agric. For. Meteorol. 2011, 151, 1741–1752. [Google Scholar] [CrossRef]
- Melaas, E.; Friedl, M.A.; Zhu, Z. Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sens. Environ. 2013, 132, 176–185. [Google Scholar] [CrossRef]
- Liang, L.; Schwartz, M.D.; Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote. Sens. Environ. 2011, 115, 143–157. [Google Scholar] [CrossRef]
- Nijland, W.; Bolton, D.; Coops, N.; Stenhouse, G. Imaging phenology; scaling from camera plots to landscapes. Remote Sens. Environ. 2016, 177, 13–20. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Li, X.; Ault, T.R. Testing Hopkins’ Bioclimatic Law with PhenoCam data. Appl. Plant Sci. 2019, 7, e01228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delbart, N.; Kergoat, L.; Le Toan, T.; Lhermitte, J.; Picard, G. Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens. Environ. 2005, 97, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Snyder, K.A.; Huntington, J.L.; Wehan, B.L.; Morton, C.G.; Stringham, T. Comparison of Landsat and Land-based phenology camera Normalized Difference Vegetation Index (NDVI) for dominant plant communities in the Great Basin. Sensors 2019, 19, 1139. [Google Scholar] [CrossRef] [Green Version]
- Luquez, V.M.; Hall, D.; Albrectsen, B.R.; Karlsson, J.; Ingvarsson, P.; Jansson, S. Natural phenological variation in aspen (Populus tremula): The SwAsp collection. Tree Genet. Genomes 2007, 4, 279–292. [Google Scholar] [CrossRef]
- Churkina, G.; Schimel, D.; Braswell, B.; Xiao, X. Spatial analysis of growing season length control over net ecosystem exchange. Glob. Change Biol. 2005, 11, 1777–1787. [Google Scholar] [CrossRef]
- Migliavacca, M.; Galvagno, M.; Cremonese, E.; Rossini, M.; Meroni, M.; Sonnentag, O.; Cogliati, S.; Manca, G.; Diotri, F.; Busetto, L.; et al. Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agric. For. Meteorol. 2011, 151, 1325–1337. [Google Scholar] [CrossRef]
Method. | Reference | Principles and Parameters |
---|---|---|
Threshold based on percentiles | Verger et al. [10] | SoS is defined as the first day of the year (DoY) when the vegetation variable exceeds a particular threshold. EoS is defined as the DoY when an index descends below a threshold. We established dynamic thresholds per pixel based on a percentile (10th, 25th, 30th, 40th and 50th) of the annual amplitude |
Logistic function | Zhang et al. [50] | SoS is defined as the DoY with the first local maximum rate of change in the curvature of a logistic function fitted to the time series. EoS is defined as the DoY with the first local minimum rate of change in the curvature |
First derivative | Tateishi and Ebata. [12] | SoS is defined as the DoY of the maximum increase (maximum first derivative) in the curve. EoS is defined as the DoY of the maximum decrease in the curve |
Autoregressive moving average | Reed et al. [11] | A moving average is first computed at a given time lag (we tested 10–50 d and selected a 30 d time lag). SoS and EoS are then defined as the DoY when the moving-average curves cross the original time series of the vegetation index |
Metric | Validation | Method | RMSE | BIAS | R2 | Slope | Intercept |
---|---|---|---|---|---|---|---|
SoS | PhenoCam | Threshold (10th percentile) | 17.80 | −0.53 | 0.29 | 1.07 | −8.57 |
Threshold (25th percentile) | 9.92 | 1.29 | 0.61 ** | 1.02 | −8.57 | ||
Threshold (30th percentile) | 8.82 | 1.96 | 0.74 ** | 1.01 | 0.7 | ||
Threshold (40th percentile) | 9.05 | 2.61 | 0.67 ** | 1.02 | −0.39 | ||
Threshold (50th percentile) | 9.45 | 3.74 | 0.65 ** | 1.00 | 2.98 | ||
Logistic function | 10.79 | 1.21 | 0.58 ** | 0.99 | 1.18 | ||
Derivative | 19.27 | 2.40 | 0.18 | 0.93 | 11.12 | ||
Moving average | 15.49 | 0.48 | 0.42 * | 1.24 | −30.9 | ||
SoS | FLUXNET | Threshold (10th percentile) | 16.50 | 3.54 | 0.31 | 0.90 | 14.03 |
Threshold (25th percentile) | 7.91 | −2.08 | 0.7 ** | 1.00 | −2.91 | ||
Threshold (30th percentile) | 6.77 | −3.56 | 0.81 ** | 1.03 | −8.02 | ||
Threshold (40th percentile) | 7.21 | −3.91 | 0.80 ** | 0.99 | −3.24 | ||
Threshold (50th percentile) | 8.42 | −5.65 | 0.77 ** | 1.04 | −11.8 | ||
Logistic function | 8.05 | -0.42 | 0.69 ** | 0.94 | 6.06 | ||
Derivative | 23.63 | −14.31 | 0.19 | 0.61 | 41.66 | ||
Moving average | 16.09 | 1.99 | 0.37 * | 0.79 | 30.13 | ||
EoS | PhenoCam | Threshold (10th percentile) | 15.33 | 5.59 | 0.33 * | 0.88 | 40.86 |
Threshold (25th percentile) | 12.90 | 2.27 | 0.45 * | 0.91 | 28.12 | ||
Threshold (30th percentile) | 13.49 | 1.36 | 0.39 * | 0.92 | 22.75 | ||
Threshold (40th percentile) | 12.07 | 0.65 | 0.51 ** | 0.95 | 13.51 | ||
Threshold (50th percentile) | 29.31 | 7.23 | 0.09 | 0.49 | 142.16 | ||
Logistic function | 17.64 | −0.93 | 0.26 | 0.82 | 52.52 | ||
Derivative | 50.74 | −1.50 | 0.03 | 0.33 | 179.59 | ||
Moving average | 27.40 | 2.15 | 0.01 | 1.46 | −140.06 | ||
EoS | FLUXNET | Threshold (10th percentile) | 10.84 | 6.25 | 0.5 ** | 1.00 | 5.93 |
Threshold (25th percentile) | 9.80 | 5.29 | 0.55 ** | 1.04 | −5.93 | ||
Threshold (30th percentile) | 9.99 | 4.90 | 0.44 * | 1.06 | -12.38 | ||
Threshold (40th percentile) | 9.67 | 4.67 | 0.53 ** | 1.18 | −46.54 | ||
Threshold (50th percentile) | 17.39 | 9.88 | 0.18 | 0.76 | 71.9 | ||
Logistic function | 10.26 | 2.97 | 0.41 * | 1.10 | −26.47 | ||
Derivative | 48.06 | 32.40 | 0.01 | −0.09 | 289.18 | ||
Moving average | 31.50 | −14.30 | 0.04 | 0.53 | 114.78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bórnez, K.; Richardson, A.D.; Verger, A.; Descals, A.; Peñuelas, J. Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data. Remote Sens. 2020, 12, 3077. https://doi.org/10.3390/rs12183077
Bórnez K, Richardson AD, Verger A, Descals A, Peñuelas J. Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data. Remote Sensing. 2020; 12(18):3077. https://doi.org/10.3390/rs12183077
Chicago/Turabian StyleBórnez, Kevin, Andrew D. Richardson, Aleixandre Verger, Adrià Descals, and Josep Peñuelas. 2020. "Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data" Remote Sensing 12, no. 18: 3077. https://doi.org/10.3390/rs12183077
APA StyleBórnez, K., Richardson, A. D., Verger, A., Descals, A., & Peñuelas, J. (2020). Evaluation of VEGETATION and PROBA-V Phenology Using PhenoCam and Eddy Covariance Data. Remote Sensing, 12(18), 3077. https://doi.org/10.3390/rs12183077