Prediction of Leaf Wetness Duration Using Geostationary Satellite Observations and Machine Learning Algorithms
Abstract
:1. Introduction
2. Study Area and Data
2.1. Satellite Observation Data
2.2. In-Situ Meteorological Variables
3. Methods
3.1. Penman–Monteith Model
3.2. Machine Learning Algorithms
3.2.1. Logistic Regression Model
3.2.2. Extreme Learning Machine
3.2.3. Random Forest
3.2.4. Generalized Boosted Model
3.2.5. Support Vector Machine
3.2.6. Deep Neural Network
3.3. Evaluation Measures
4. Results
4.1. Performance Evaluation for LW Prediction Models
4.2. Performance Evaluation for LWD Predictions
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Magarey, R.D.; Russo, J.M.; Seem, R.C.; Gadoury, D.M. Surface wetness duration under controlled environmental conditions. Agric. For. Meteorol. 2005, 128, 111–122. [Google Scholar] [CrossRef]
- Huber, L.; Gillespie, T.J. Modeling Leaf Wetness in Relation to Plant Disease Epidemiology. Annu. Rev. Phytopathol. 1992, 30, 553–577. [Google Scholar] [CrossRef]
- Schmitz, H.F.; Grant, R.H. Precipitation and dew in a soybean canopy: Spatial variations in leaf wetness and implications for Phakopsora pachyrhizi infection. Agric. For. Meteorol. 2009, 149, 1621–1627. [Google Scholar] [CrossRef]
- Rowlandson, T.; Gleason, M.; Sentelhas, P.; Gillespie, T.; Thomas, C.; Hornbuckle, B. Reconsidering Leaf Wetness Duration Determination for Plant Disease Management. Plant. Dis. 2015, 99, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleason, M.L.; Duttweiler, K.B.; Batzer, J.C.; Taylor, S.E.; Sentelhas, P.C.; Monteiro, J.E.B.A.; Gillespie, T.J. Obtaining weather data for input to crop disease-warning systems: Leaf wetness duration as a case study. Scientia Agricola 2008, 65, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Miranda, R.A.C.; Davies, T.D.; Cornell, S.E. A laboratory assessment of wetness sensors for leaf, fruit and trunk surfaces. Agric. For. Meteorol. 2000, 102, 263–274. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Gillespie, T.J.; Gleason, M.L.; Monteiro, J.E.B.A.; Helland, S.T. Operational exposure of leaf wetness sensors. Agric. For. Meteorol. 2004, 126, 59–72. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Gillespie, T.J.; Santos, E.A. Leaf wetness duration measurement: Comparison of cylindrical and flat plate sensors under different field conditions. Int. J. Biometeorol. 2007, 51, 265–273. [Google Scholar] [CrossRef]
- Rao, P.S.; Gillespie, T.J.; Schaafsma, A.W. Estimating wetness duration on maize ears from meteorological observations. Can. J. Soil. Sci. 1998, 78, 149–154. [Google Scholar] [CrossRef]
- Kim, K.S.; Taylor, S.E.; Gleason, M.L.; Koehler, K.J. Model to Enhance Site-Specific Estimation of Leaf Wetness Duration. Plant. Dis. 2002, 86, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Papastamati, K.; McCartney, H.A.; Bosch, F.V.D. Modelling leaf wetness duration during the rosette stage of oilseed rape. Agric. For. Meteorol. 2004, 123, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Leca, A.; Parisi, L.; Lacointe, A.; Saudreau, M. Comparison of Penman-Monteith and non-linear energy balance approaches for estimating leaf wetness duration and apple scab infection. Agric. For. Meteorol. 2011, 151, 1158–1162. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Gillespie, T.J.; Gleason, M.L.; Monteiro, J.E.B.M.; Pezzopane, J.R.M.; Pedro, M.J. Evaluation of a Penman–Monteith approach to provide “reference” and crop canopy leaf wetness duration estimates. Agric. For. Meteorol. 2006, 141, 105–117. [Google Scholar] [CrossRef]
- Francl, L.J.; Panigrahi, S. Artificial neural network models of wheat leaf wetness. Agric. For. Meteorol. 1997, 88, 57–65. [Google Scholar] [CrossRef]
- Kim, K.S.; Taylor, S.E.; Gleason, M.L. Development and validation of a leaf wetness duration model using a fuzzy logic system. Agric. For. Meteorol. 2004, 127, 53–64. [Google Scholar] [CrossRef]
- Marta, A.D.; De Vincenzi, M.; Dietrich, S.; Orlandini, S. Neural network for the estimation of leaf wetness duration: Application to a Plasmopara viticola infection forecasting. Phys. Chem. Earth 2005, 30, 91–96. [Google Scholar] [CrossRef]
- Park, J.; Shin, J.-Y.; Kim, K.R.; Ha, J.-C. Leaf Wetness Duration Models Using Advanced Machine Learning Algorithms: Application to Farms in Gyeonggi Province, South Korea. Water 2019, 11, 1878. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Sanchez-Molina, J.A.; Li, M.; Rodríguez Díaz, F. Improving the Performance of Vegetable Leaf Wetness Duration Models in Greenhouses Using Decision Tree Learning. Water 2019, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Wagle, P.; Bhattarai, N.; Gowda, P.H.; Kakani, V.G. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS J. Photogramm. 2017, 128, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.-Y.; Lee, K.-T.; Jee, J.-B.; Zo, I.-S. Retrieval of outgoing longwave radiation at top-of-atmosphere using Himawari-8 AHI data. Remote Sens. Environ. 2018, 204, 498–508. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Lee, K.-T. Radiation Component Calculation and Energy Budget Analysis for the Korean Peninsula Region. Remote Sens. 2018, 10, 1147. [Google Scholar] [CrossRef] [Green Version]
- Khand, K.; Taghvaeian, S.; Gowda, P.; Paul, G. A Modeling Framework for Deriving Daily Time Series of Evapotranspiration Maps Using a Surface Energy Balance Model. Remote Sens. 2019, 11, 508. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.-S.; Hong, S. Sea Fog Detection Based on Normalized Difference Snow Index Using Advanced Himawari Imager Observations. Remote Sens. 2020, 12, 1521. [Google Scholar] [CrossRef]
- Cho, J.; Lee, Y.-W.; Han, K.-S. The effect of fractional vegetation cover on the relationship between EVI and soil moisture in non-forest regions. Remote Sens. Lett. 2014, 5, 37–45. [Google Scholar] [CrossRef]
- Lee, C.S.; Park, J.D.; Shin, J.; Jang, J. Improvement of AMSR2 Soil Moisture Products Over South Korea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3839–3849. [Google Scholar] [CrossRef]
- Cho, J.; Lee, Y.-W.; Lee, H.-S. Assessment of the relationship between thermal-infrared-based temperature−vegetation dryness index and microwave satellite-derived soil moisture. Remote Sens. Lett. 2014, 5, 627–636. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Ryu, S.; Cho, J.; Lee, Y.-W.; Park, N.-W.; Chung, C.-Y.; Hong, S. Infrared Soil Moisture Retrieval Algorithm Using Temperature-Vegetation Dryness Index and Moderate Resolution Imaging Spectroradiometer Data. Asia-Pac. J. Atmos. Sci. 2020, 56, 275–289. [Google Scholar] [CrossRef]
- Kim, K.S.; Hill, G.N.; Beresford, R.M. Remote sensing and interpolation methods can obtain weather data for disease prediction. N.Z. Plant Prot. 2010, 63, 182–186. [Google Scholar] [CrossRef]
- Cosh, M.H.; Kabela, E.D.; Hornbuckle, B.; Gleason, M.L.; Jackson, T.J.; Prueger, J.H. Observations of dew amount using in situ and satellite measurements in an agricultural landscape. Agric. For. Meteorol. 2009, 149, 1082–1086. [Google Scholar] [CrossRef]
- Kabela, E.D.; Hornbuckle, B.K.; Cosh, M.H.; Anderson, M.C.; Gleason, M.L. Dew frequency, duration, amount, and distribution in corn and soybean during SMEX05. Agric. For. Meteorol. 2009, 149, 11–24. [Google Scholar] [CrossRef]
- Anderson, M.C.; Bland, W.L.; Norman, J.M.; Diak, G.D. Canopy Wetness and Humidity Prediction Using Satellite and Synoptic-Scale Meteorological Observations. Plant Disease 2001, 85, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-S.; Ho, C.-H. Earth and environmental remote sensing community in South Korea: A review. Remote Sens. Appl. Soc. Environ. 2015, 2, 66–76. [Google Scholar] [CrossRef]
- Schmit, T.J.; Gunshor, M.M.; Menzel, W.P.; Gurka, J.J.; Li, J.; Bachmeier, A.S. Introducing the next-generation advanced baseline imager on GOES-R. Bull. Am. Meteorol. Soc. 2005, 86, 1079–1096. [Google Scholar] [CrossRef]
- Oh, S.M.; Borde, R.; Carranza, M.; Shin, I.-C. Development and Intercomparison Study of an Atmospheric Motion Vector Retrieval Algorithm for GEO-KOMPSAT-2A. Remote Sens. 2019, 11, 2054. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-A.; Woo, H.-J.; Chung, S.-R.; Cheong, S.-H. Development of Sea Surface Temperature Retrieval Algorithms for Geostationary Satellite Data (Himawari-8/AHI). Asia-Pac. J. Atmos. Sci. 2020, 56, 187–206. [Google Scholar] [CrossRef]
- Sentelhas, P.C.; Dalla Marta, A.; Orlandini, S.; Santos, E.A.; Gillespie, T.J.; Gleason, M.L. Suitability of relative humidity as an estimator of leaf wetness duration. Agric. For. Meteorol. 2008, 148, 392–400. [Google Scholar] [CrossRef]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howel, T.A.; Snyder, R.; Brown, P.; Echings, S.; et al. ASCE’s Standardized Reference Evapotranspiration Equation. In Watershed Management and Operations Management; ASCE: Reston, VA, USA, 2000; pp. 1–11. [Google Scholar]
- Holloway, J.; Mengersen, K. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sens. 2018, 10, 1365. [Google Scholar] [CrossRef] [Green Version]
- Van Houwelingen, J.C.; le Cessie, S. Logistic Regression, a review. Stat. Neerl. 1988, 42, 215–232. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Peña, M.; Dool, H.V.D. Consolidation of Multimodel Forecasts by Ridge Regression: Application to Pacific Sea Surface Temperature. J. Clim. 2008, 21, 6521–6538. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans. Syst. Man Cybern. B Cybern. 2012, 42, 513–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Zhang, W.-J. Comparison of different methods for variable selection. Anal. Chim. Acta 2001, 446, 475–481. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote. Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Smith, A. Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm. J. Spat. Sci. 2010, 55, 6979. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.N.; Ziegler, A. Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. J. Stat. Softw. 2017, 77, 17. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Stochastic gradient boosting. Comput. Statist. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 44. [Google Scholar] [CrossRef] [PubMed]
- Torres-Barrán, A.; Alonso, Á.; Dorronsoro, J.R. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing 2019, 326–327, 151–160. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Shukla, S. Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agric. For. Meteorol. 2015, 200, 172–184. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Chen, J.; Liu, S.; Jia, K.; Zhang, X.; Xiao, Z.; Fisher, J.B.; Mu, Q.; et al. Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agric. For. Meteorol. 2017, 242, 55–74. [Google Scholar] [CrossRef]
- Jung, K.; Shin, J.-Y.; Park, D. A new approach for river network classification based on the beta distribution of tributary junction angles. J. Hydrol. 2019, 572, 66–74. [Google Scholar] [CrossRef]
- Chen, P.-H.; Lin, C.-J.; Schölkopf, B. A tutorial on ν-support vector machines. Appl. Stoch. Model. Bus. 2005, 21, 111–136. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Tao, Y.; Gao, X.; Hsu, K.; Sorooshian, S.; Ihler, A. A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products. J. Hydrometeorol. 2016, 17, 931–945. [Google Scholar] [CrossRef]
- Xu, J.; Sun, X.; Zhang, Z.; Zhao, G.; Lin, J. Understanding and Improving Layer Normalization. Proceedings of the Advances in Neural Information Processing Systems, USA; 2019, pp. 4381–4391. Available online: https://deepai.org/publication/understanding-and-improving-layer-normalization (accessed on 3 September 2020).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv Preprint 2014, arXiv:1412.6980. [Google Scholar]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems, USA; 2019; pp. 8026–8037. Available online: https://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library (accessed on 1 September 2020).
- Rakwatin, P.; Takeuchi, W.; Yasuoka, Y. Stripe Noise Reduction in MODIS Data by Combining Histogram Matching With Facet Filter. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1844–1856. [Google Scholar] [CrossRef]
- Münch, B.; Trtik, P.; Marone, F.; Stampanoni, M. Stripe and ring artifact removal with combined wavelet Fourier filtering. Opt. Express 2009, 17, 8567–8591. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Zhang, L. A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1492–1502. [Google Scholar] [CrossRef]
Channel | Central Wavelength (μm) | Band Width (μm) | Spatial Resolution (km) | Physical Properties |
---|---|---|---|---|
1 | 0.47 | 0.04 | 1.0 | Vegetation, Aerosol |
2 | 0.51 | 0.03 | 1.0 | Vegetation, Aerosol |
3 | 0.64 | 0.08 | 0.5 | Low cloud, Aerosol, Fog, Wind |
4 | 0.86 | 0.03 | 1.0 | Vegetation, Aerosol, Cirrus cloud, Wind |
5 | 1.37 | 0.02 | 2.0 | Cloud phase, Particle size, Snow |
6 | 1.61 | 0.04 | 2.0 | Vegetation, Particle size, Snow |
7 | 3.83 | 0.19 | 2.0 | Low cloud, Fog, Fire, Wind |
8 | 6.21 | 0.84 | 2.0 | Mid- and High-level water vapor, Wind, Rainfall |
9 | 6.94 | 0.40 | 2.0 | Mid-level water vapor, Wind, Rainfall |
10 | 7.33 | 0.18 | 2.0 | Mid- and Lower-level water vapor, Wind, SO2 |
11 | 8.59 | 0.35 | 2.0 | Total water of stability, Cloud phase, Rainfall, Dust, SO2 |
12 | 9.62 | 0.38 | 2.0 | Total ozone, Turbulence, Wind |
13 | 10.35 | 0.47 | 2.0 | Surface, cloud |
14 | 11.23 | 0.66 | 2.0 | Sea surface temperature, Cloud, Rainfall |
15 | 12.36 | 1.11 | 2.0 | Total water, Sea surface temperature, Cloud, Ash |
16 | 13.29 | 0.57 | 2.0 | Air temperature, Cloud height and amount, CO2 |
Model | ACC | Recall | Precision | F |
---|---|---|---|---|
PM | 0.7878 | 0.5099 | 0.5269 | 0.5157 |
LR | 0.6493 | 0.5062 | 0.3173 | 0.3901 |
ELM | 0.6826 | 0.3729 | 0.6345 | 0.4697 |
GBM | 0.7484 | 0.3853 | 0.2281 | 0.2866 |
RF | 0.8226 | 0.3360 | 0.7106 | 0.4563 |
SVM | 0.7317 | 0.2453 | 0.3497 | 0.2883 |
DNN | 0.7094 | 0.5733 | 0.3931 | 0.4666 |
Model | RMSE | Cor | mBias |
---|---|---|---|
PM | 5.15 | 0.615 | 0.117 |
LR | 6.89 | 0.428 | 3.089 |
ELM | 6.98 | 0.594 | −3.611 |
GBM | 5.67 | 0.597 | 2.117 |
RF | 5.50 | 0.682 | 2.719 |
SVM | 6.13 | 0.406 | −1.549 |
DNN | 5.19 | 0.704 | 2.379 |
Model | Station #6 | Station #11 | ||||
---|---|---|---|---|---|---|
RMSE | Cor | mBias | RMSE | Cor | mBias | |
PM | 5.65 | 0.670 | 2.006 | 4.60 | 0.646 | −1.761 |
LR | 6.71 | 0.456 | 1.637 | 7.06 | 0.435 | 4.533 |
ELM | 7.82 | 0.583 | −4.128 | 6.04 | 0.552 | −3.456 |
GBM | 6.43 | 0.557 | 2.430 | 4.80 | 0.599 | 1.806 |
RF | 6.87 | 0.605 | 3.816 | 3.67 | 0.815 | 1.628 |
SVM | 7.27 | 0.290 | −2.486 | 4.73 | 0.524 | −0.617 |
DNN | 5.56 | 0.669 | 1.682 | 4.79 | 0.740 | 3.072 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.-Y.; Kim, B.-Y.; Park, J.; Kim, K.R.; Cha, J.W. Prediction of Leaf Wetness Duration Using Geostationary Satellite Observations and Machine Learning Algorithms. Remote Sens. 2020, 12, 3076. https://doi.org/10.3390/rs12183076
Shin J-Y, Kim B-Y, Park J, Kim KR, Cha JW. Prediction of Leaf Wetness Duration Using Geostationary Satellite Observations and Machine Learning Algorithms. Remote Sensing. 2020; 12(18):3076. https://doi.org/10.3390/rs12183076
Chicago/Turabian StyleShin, Ju-Young, Bu-Yo Kim, Junsang Park, Kyu Rang Kim, and Joo Wan Cha. 2020. "Prediction of Leaf Wetness Duration Using Geostationary Satellite Observations and Machine Learning Algorithms" Remote Sensing 12, no. 18: 3076. https://doi.org/10.3390/rs12183076
APA StyleShin, J. -Y., Kim, B. -Y., Park, J., Kim, K. R., & Cha, J. W. (2020). Prediction of Leaf Wetness Duration Using Geostationary Satellite Observations and Machine Learning Algorithms. Remote Sensing, 12(18), 3076. https://doi.org/10.3390/rs12183076