Determination of Bathing Water Quality Using Thermal Images Landsat 8 on the West Coast of Tangier: Preliminary Results
Abstract
:1. Introduction
2. Material and methods
2.1. Site Description
2.2. Landsat Imagery
2.3. In-Situ Measurements
2.4. Study Procedure
2.4.1. Water Surface Temperature Estimation
- : spectral at-sensor radiance (top of atmosphere) []
- : atmospheric transmittance at [unitless].
- : surface spectral emissivity [unitless].
- : ground radiance at a temperature T [K].
- : upwelling atmospheric radiance in a window [].
- : downwelling atmospheric radiance in a window [].
- : band-specific multiplicative rescaling factor.
- : band-specific additive rescaling factor.
- : Quantized and calibrated standard product pixel values.
- : land/water surface temperature.
- : light speed, equal to 2.9979 × 108 m/s.
- : Planck constant, equal to 6.6261 × 10−34 J·s.
- : wavelength.
2.4.2. Spatio-Temporal Analysis
3. Results
4. Conclusions
- -
- In relation to the evaluation of water consumer safety, more robust and complex models have to be developed, such as neuronal networks. These future models will manage information from different sources, providing information to support decision makers based on complex classifications.
- -
- A dedicated campaign in the western coastal waters of Tangier, Morocco should be established to provide a huge amount of necessary data as input to identify he network’s rules.
- -
- Real-time modeling of bacteria concentrations is necessary as it aids decision makers in their judgment of bathing water. This new service will be supported by predicted models based on remote sensing thermal images and other data sources including, but not limited to, wind models and in-situ measurements.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sloggett, D.; Srokosz, M.; Aiken, J.; Boxall, S. Operational Uses of Ocean Colour Data-Perspectives for the OCTOPUS Programme; Balkema Publishers: Rotterdam, The Netherlands, 1995. [Google Scholar]
- Gravari-Barbas, M.; Jacquot, S. Atlas Mondial du Tourisme et des Loisirs; Autrement: Paris, France, 2018. [Google Scholar]
- Le Tixerant, M. Human Activities Dynamic in Coastal Sea. Application to the Iroise Sea. Ph.D. Thesis, Université de Bretagne Occidentale, Brest, France, 2004. [Google Scholar]
- Moubarrad, F.-Z.L.; Assobhei, O. The health effects of wastewater on the prevalence of ascariasis among the children of the discharge zone of El Jadida, Morocco. Int. J. Environ. Health Res. 2005, 15, 135–142. [Google Scholar] [CrossRef]
- Paraskevas, P.A.; Giokas, D.L.; Lekkas, T.D. Wastewater management in coastal urban areas: The case of Greece. Water Sci. Technol. 2002, 46, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Selvakumar, A.; Borst, M. Variation of microorganism concentrations in urban stormwater runoff with land use and seasons. J. Water Health 2006, 4, 109–124. [Google Scholar] [CrossRef]
- Burton, G.A., Jr.; Pitt, R. Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kosenius, A.-K. Heterogeneous preferences for water quality attributes: The case of eutrophication in the Gulf of Finland, the Baltic Sea. Ecol. Econ. 2010, 69, 528–538. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Schiebe, F.R. Water quality. In Remote Sensing in Hydrology and Water Management; Springer: Berlin/Heidelberg, Germany, 2000; pp. 287–303. [Google Scholar]
- CRWN. Colorado River Watch Network Water Quality Monitoring; CRWN: Austin, TX, USA, 2012. [Google Scholar]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Mohebbi, M.R.; Saeedi, R.; Montazeri, A.; Vaghefi, K.A.; Labbafi, S.; Oktaie, S.; Abtahi, M.; Mohagheghian, A. Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecol. Indic. 2013, 30, 28–34. [Google Scholar] [CrossRef]
- Boyacioglu, H. Development of a water quality index based on a European classification scheme. Water SA 2007, 33. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K. Assessment model application of water supply system management in crisis situations. Glob. Nest J. 2014, 16, 893–900. [Google Scholar]
- Pietrucha-Urbanik, K.; Tchorzewska-Cieslak, B. Water Supply System operation regarding consumer safety using Kohonen neural network. In Safety, Reliability and Risk Analysis: Beyond the Horizon; Taylor & Francis Group: London, UK, 2014; pp. 1115–1120. [Google Scholar]
- Thomas, A.; Byrne, D.; Weatherbee, R. Coastal sea surface temperature variability from Landsat infrared data. Remote Sens. Environ. 2002, 81, 262–272. [Google Scholar] [CrossRef]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Sahu, N.; Yamashiki, Y. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere 2013, 93, 946–953. [Google Scholar] [CrossRef]
- Morel, A.; Prieur, L. Analysis of variations in ocean color 1. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Anding, D.; Kauth, R. Estimation of sea surface temperature from space. Remote Sens. Environ. 1970, 1, 217–220. [Google Scholar] [CrossRef]
- Tilstone, G.H.; Lotliker, A.A.; Miller, P.I.; Ashraf, P.M.; Kumar, T.S.; Suresh, T.; Ragavan, B.R.; Menon, H.B. Assessment of MODIS-Aqua chlorophyll-a algorithms in coastal and shelf waters of the eastern Arabian Sea. Cont. Shelf Res. 2013, 65, 14–26. [Google Scholar] [CrossRef]
- Santini, F.; Alberotanza, L.; Cavalli, R.M.; Pignatti, S. A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid Venice lagoon waters. Remote Sens. Environ. 2010, 114, 887–898. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Chaubey, I.; Garg, V. Lake water quality assessment from Landsat thematic mapper data using neural network: An approch to optimal band combination selection. J. Am. Water Resour. Assoc. 2006, 42, 1683–1695. [Google Scholar] [CrossRef]
- He, B.; Oki, K.; Wang, Y.; Oki, T. Using remotely sensed imagery to estimate potential annual pollutant loads in river basins. Water Sci. Technol. 2009, 60, 2009–2015. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Cazzaniga, I.; Schenk, K.; Rieger, P.; Braga, F.; Matta, E.; Brando, V. Evaluation of Multi-Resolution Satellite Sensors for Assessing Water Quality and Bottom Depth of Lake Garda. Sensors 2014, 14, 24116–24131. [Google Scholar] [CrossRef] [Green Version]
- Brando, V.E.; Dekker, A.G. Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1378–1387. [Google Scholar] [CrossRef]
- Eric, S.; David, B.; Mark, D.B.; Steven, D.G. Flow, food supply and acorn barnacle population dynamics. Mar. Ecol. Prog. Ser. 1994, 104, 49–62. [Google Scholar]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Kester, D.R.; Wang, Z.; Lian, J.; Kawamura, H. AVHRR satellite remote sensing and shipboard measurements of the thermal plume from the Daya Bay, nuclear power station, China. Remote Sens. Environ. 2003, 84, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.-H.; Shanmugam, P.; Lee, J.-H.; Kang, Y.Q. Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosystem of Korea. Mar. Environ. Res. 2006, 61, 186–201. [Google Scholar] [CrossRef]
- Ouzounov, D.; Bryant, N.; Logan, T.; Pulinets, S.; Taylor, P. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Phys. Chem. Earth Parts ABC 2006, 31, 154–163. [Google Scholar] [CrossRef]
- Peñaflor, E.L.; Skirving, W.J.; Strong, A.E.; Heron, S.F.; David, L.T. Sea-surface temperature and thermal stress in the Coral Triangle over the past two decades. Coral Reefs 2009, 28, 841–850. [Google Scholar] [CrossRef]
- Liu, G.; Heron, S.; Eakin, C.; Muller-Karger, F.; Vega-Rodriguez, M.; Guild, L.; De La Cour, J.; Geiger, E.; Skirving, W.; Burgess, T.; et al. Reef-Scale Thermal Stress Monitoring of Coral Ecosystems: New 5-km Global Products from NOAA Coral Reef Watch. Remote Sens. 2014, 6, 11579–11606. [Google Scholar] [CrossRef] [Green Version]
- Hadjimitsis, D.G.; Hadjimitsis, M.G.; Clayton, C.; Clarke, B.A. Determination of Turbidity in Kourris Dam in Cyprus Utilizing Landsat TM Remotely Sensed Data. Water Resour. Manag. 2006, 20, 449–465. [Google Scholar] [CrossRef]
- Mallast, U.; Siebert, C.; Wagner, B.; Sauter, M.; Gloaguen, R.; Geyer, S.; Merz, R. Localisation and temporal variability of groundwater discharge into the Dead Sea using thermal satellite data. Environ. Earth Sci. 2013, 69, 587–603. [Google Scholar] [CrossRef] [Green Version]
- Casciello, D.; Lacava, T.; Pergola, N.; Tramutoli, V. Robust Satellite Techniques for oil spill detection and monitoring using AVHRR thermal infrared bands. Int. J. Remote Sens. 2011, 32, 4107–4129. [Google Scholar] [CrossRef]
- Salama, Y.; Chennaoui, M.; Mountadar, M.; Rihani, M.; Assobhei, O. The physicochemical and bacteriological quality and environmental risks of raw sewage rejected in the coast of the city of El Jadida (Morocco). Carpathian J. Earth Environ. Sci. 2013, 8, 39–48. [Google Scholar]
- Moubarrad, F.-Z.L.; Assobhei, O. Health risks of raw sewage with particular reference to Ascaris in the discharge zone of El Jadida (Morocco). Desalination 2007, 215, 120–126. [Google Scholar] [CrossRef]
- European Union. Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Off. J. Eur. Union 2006, 64, 14. [Google Scholar]
- Callahan, K.M.; Taylor, D.J.; Sobsey, M.D. Comparative survival of hepatitis A virus, poliovirus and indicator viruses in geographically diverse seawaters. Water Sci. Technol. 1995, 31, 189–193. [Google Scholar] [CrossRef]
- Craig, D.L.; Fallowfield, H.J.; Cromar, N.J. Use of microcosms to determine persistence of Escherichia coli in recreational coastal water and sediment and validation with in situ measurements. J. Appl. Microbiol. 2004, 96, 922–930. [Google Scholar] [CrossRef] [Green Version]
- Mallin, M.A.; Williams, K.E.; Esham, E.C.; Lowe, R.P. Effect of human development on bacteriological water quality in coastal watersheds. Ecol. Appl. 2000, 10, 1047–1056. [Google Scholar] [CrossRef]
- Ekercin, S. Water quality retrievals from high resolution IKONOS multispectral imagery: A case study in Istanbul, Turkey. Water. Air. Soil Pollut. 2007, 183, 239–251. [Google Scholar] [CrossRef]
- Fournier, M. L’apport de l’imagerie satellitale à la surveillance maritime. Contribution géographique et géopolitique. Ph.D. Thesis, Université Paul Valéry-Montpellier III, Montpellier, France, 2012. [Google Scholar]
- Shaban, A. Use of satellite images to identify marine pollution along the Lebanese coast. Environ. Forensics 2008, 9, 205–214. [Google Scholar] [CrossRef]
- Vignolo, A.; Pochettino, A.; Cicerone, D. Water quality assessment using remote sensing techniques: Medrano Creek, Argentina. J. Environ. Manag. 2006, 81, 429–433. [Google Scholar] [CrossRef]
- Kelsey, R.H.; Scott, G.I.; Porter, D.E.; Siewicki, T.C.; Edwards, D.G. Improvements to Shellfish Harvest Area Closure Decision Making Using GIS, Remote Sensing, and Predictive Models. Estuaries Coasts 2010, 33, 712–722. [Google Scholar] [CrossRef]
- Kim, J.H.; Grant, S.B. Public Mis-Notification of Coastal Water Quality: A Probabilistic Evaluation of Posting Errors at Huntington Beach, California. Environ. Sci. Technol. 2004, 38, 2497–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siewicki, T.C.; Pullaro, T.; Pan, W.; McDaniel, S.; Glenn, R.; Stewart, J. Models of total and presumed wildlife sources of fecal coliform bacteria in coastal ponds. J. Environ. Manag. 2007, 82, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, H.; Porter, D.E.; Scott, G.; Neet, M.; White, D. Using geographic information systems and regression analysis to evaluate relationships between land use and fecal coliform bacterial pollution. J. Exp. Mar. Biol. Ecol. 2004, 298, 197–209. [Google Scholar] [CrossRef]
- Wright, R.C. A Comparison of the Levels of Faecal Indicator Bacteria in Water and Human Faeces in a Rural Area of a Tropical Developing Country (Sierra Leone). J. Hyg. 1982, 89, 69–78. [Google Scholar] [CrossRef]
- Viau, E.J.; Goodwin, K.D.; Yamahara, K.M.; Layton, B.A.; Sassoubre, L.M.; Burns, S.L.; Tong, H.-I.; Wong, S.H.C.; Lu, Y.; Boehm, A.B. Bacterial pathogens in Hawaiian coastal streams—Associations with fecal indicators, land cover, and water quality. Water Res. 2011, 45, 3279–3290. [Google Scholar] [CrossRef] [PubMed]
- Maillard, P.; Pinheiro Santos, N.A. A spatial-statistical approach for modeling the effect of non-point source pollution on different water quality parameters in the Velhas river watershed—Brazil. J. Environ. Manag. 2008, 86, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, D.; Tsegaye, T.D.; Tadesse, W.; McKay, D.; Coleman, T.L. The application of remote sensing, geographic information systems, and Global Positioning System technology to improve water quality in northern Alabama. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; Volume 3, pp. 1291–1293. [Google Scholar]
- EEA. Horizon 2020 Mediterranean Report Annex 4; Publications Office of the European Union: Luxembourg, 2014; p. 36. [Google Scholar]
- Cherif, E.K.; Salmoun, F. Diagnostic of the Environmental Situation of the West Coast of Tangier. J. Mater. Environ. Sci. 2018, 8, 631–640. [Google Scholar]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef]
- Barsi, J.; Lee, K.; Kvaran, G.; Markham, B.; Pedelty, J. The spectral response of the Landsat-8 operational land imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Ministry of the Environment. Rapport Analytique du Surveillance de la Qualité des eaux de Baignade; Ministry of the Environment: Morocco, 2013.
- Ministry of the Environment. Rapport Analytique du Surveillance de la Qualité des eaux de Baignade; Ministry of the Environment: Morocco, 2014.
- Ministry of the Environment. Rapport Analytique du Surveillance de la Qualité des eaux de Baignade; Ministry of the Environment: Morocco, 2015.
- Ministry of the Environment. Rapport Analytique du Surveillance de la Qualité des eaux de Baignade; Ministry of the Environment: Morocco, 2016.
- ISO Water Quality—Enumeration of Escherichia Coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora; ISO: Geneva, Switzerland, 2014.
- ISO Water Quality—Research and Enumeration of Intestinal Enterococci—Part 2: Membrane Filtration Method for Waters; ISO: Geneva, Switzerland, 2000.
- IMANOR. Standards for Monitoring Bathing Water Quality; IMANOR: Rabat, Morocco, 1998.
- Alesheikh, A.A.; Ghorbanali, A.; Nouri, N. Coastline change detection using remote sensing. Int. J. Environ. Sci. Technol. 2007, 4, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Jensen, J.R. Remote Sensing of Environment: An Earth Resource. Saddle River; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 2000. [Google Scholar]
- Mao, K.; Qin, Z.; Shi, J.; Gong, P. Research of Split-Window Algorithm on the MODIS. Geomat. Inf. Sci. Wuhan Univ. 2005, 30, 703–707. [Google Scholar]
- Zanter, K. Landsat 8 Dta Users Handbook; Department of the Interior U.S. Geological Survey: Sioux Falls, SD, USA, 2018; Volume Version 3.0.
- Simon, R.N.; Tormos, T.; Danis, P.-A. Retrieving water surface temperature from archive Landsat thermal infrared data: Application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 247–250. [Google Scholar] [CrossRef]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), Toulouse, France, 21–25 July 2003; Volume 5, pp. 3014–3016. [Google Scholar]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B. Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2674–2677. [Google Scholar] [CrossRef]
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Bourouhou, I.; Salmoun, F.; Gedik, Y. Characteristics of Mediterranean Sea Water in Vicinity of Tangier Region, North of Morocco. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 1291. [Google Scholar] [CrossRef]
- Edberg, S.C.L.; Rice, E.W.; Karlin, R.J.; Allen, M.J. Escherichia coli: The best biological drinking water indicator for public health protection. J. Appl. Microbiol. 2000, 88, 106S–116S. [Google Scholar] [CrossRef]
Landsat ID | Path | Row | Date | Time |
---|---|---|---|---|
LC08_L1TP_202035_20170414_20170501_01_T1 | 202 | 35 | 14-APR-17 | 10:56:08 |
LC08_L1TP_202035_20170516_20170525_01_T1 | 202 | 35 | 16-MAY-17 | 11:02:08 |
LC08_L1TP_202035_20170617_20170629_01_T1 | 202 | 35 | 17-JUN-17 | 11:02:24 |
LC08_L1TP_201035_20170813_20170825_01_T1 | 201 | 35 | 13-AUG-17 | 10:57:04 |
Date | Sample Points | TC [UFC/100 mL] | FC [UFC/100 mL] | IE [UFC/100 mL] | E. coli [UFC/100 mL] | Quality Class * | Ta [°C] | SST [°C] |
---|---|---|---|---|---|---|---|---|
April | 1 | 250.00 | 21.98 | 58.41 | 191.20 | B | 21.09 | 20.75 |
2 | 372.59 | 19.80 | 79.33 | 80.52 | A | 18.34 | ||
3 | 156.77 | 45.07 | 40.00 | 41.85 | B | 17.59 | ||
4 | 441.83 | 130.00 | 49.63 | 539.00 | C | 21.18 | ||
5 | 5589.31 | 5772.96 | 5802.07 | 5535.68 | D | 23.58 | ||
6 | 486.88 | 162.65 | 47.06 | 230.00 | B | 21.08 | ||
7 | 34.53 | 13.09 | 5.46 | 7.16 | A | 17.93 | ||
May | 1 | 279.79 | 11.81 | 88.76 | 150.00 | B | 20.26 | 18.29 |
2 | 330.83 | 15.45 | 69.14 | 84.40 | A | 17.81 | ||
3 | 154.83 | 55.08 | 50.00 | 33.48 | A | 17.59 | ||
4 | 433.64 | 165.82 | 75.05 | 562.49 | C | 20.35 | ||
5 | 5674.58 | 5743.15 | 5778.35 | 5589.31 | D | 23.42 | ||
6 | 495.43 | 170.79 | 47.94 | 265.93 | B | 20.19 | ||
7 | 38.00 | 15.12 | 6.26 | 8.63 | A | 18.24 | ||
June | 1 | 245.45 | 17.59 | 104.82 | 152.96 | B | 25.00 | 24.51 |
2 | 306.87 | 15.84 | 101.13 | 73.95 | A | 25.33 | ||
3 | 167.42 | 64.54 | 76.30 | 33.48 | A | 23.68 | ||
4 | 448.00 | 177.64 | 86.91 | 569.98 | C | 27.58 | ||
5 | 5589.31 | 5757.00 | 5789.98 | 5508.03 | D | 28.61 | ||
6 | 489.10 | 165.85 | 36.93 | 275.04 | C | 27.00 | ||
7 | 41.21 | 10.48 | 5.92 | 4.91 | A | 24.00 | ||
August | 1 | 250.00 | 26.48 | 73.01 | 150.00 | B | 26.81 | 25.80 |
2 | 315.89 | 23.00 | 81.70 | 60.00 | A | 25.16 | ||
3 | 140.00 | 66.36 | 62.50 | 49.71 | A | 24.58 | ||
4 | 390.40 | 163.43 | 62.04 | 566.07 | C | 27.99 | ||
5 | 5589.31 | 5651.26 | 5704.72 | 5589.31 | D | 29.75 | ||
6 | 466.02 | 139.55 | 38.66 | 264.22 | C | 26.79 | ||
7 | 40.00 | 16.00 | 4.57 | 6.47 | A | 24.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherif, E.K.; Salmoun, F.; Mesas-Carrascosa, F.J. Determination of Bathing Water Quality Using Thermal Images Landsat 8 on the West Coast of Tangier: Preliminary Results. Remote Sens. 2019, 11, 972. https://doi.org/10.3390/rs11080972
Cherif EK, Salmoun F, Mesas-Carrascosa FJ. Determination of Bathing Water Quality Using Thermal Images Landsat 8 on the West Coast of Tangier: Preliminary Results. Remote Sensing. 2019; 11(8):972. https://doi.org/10.3390/rs11080972
Chicago/Turabian StyleCherif, El Khalil, Farida Salmoun, and Francisco Javier Mesas-Carrascosa. 2019. "Determination of Bathing Water Quality Using Thermal Images Landsat 8 on the West Coast of Tangier: Preliminary Results" Remote Sensing 11, no. 8: 972. https://doi.org/10.3390/rs11080972
APA StyleCherif, E. K., Salmoun, F., & Mesas-Carrascosa, F. J. (2019). Determination of Bathing Water Quality Using Thermal Images Landsat 8 on the West Coast of Tangier: Preliminary Results. Remote Sensing, 11(8), 972. https://doi.org/10.3390/rs11080972