Evaluation of a Semi-Intensive Aquaponics System, with and without Bacterial Biofilter in a Tropical Location
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental System
2.2. System Operation
2.3. Experimental Conditions
2.4. Water Quality and Toxic Nitrogen Compounds
- T = Temperature in K
- f = fraction of total ammonia that is un-ionized
- pKa = dissociation constant from Equation (1)
2.5. Statistical Analyses
3. Results
3.1. Pak choi and tilapia Production in Aquaponics Systems
3.2. Water Quality in Plant Aquaponics Culture and Tilapia Aquaponics Culture Components
4. Discussion
4.1. Pak choi and tilapia Production in Aquaponics Systems
4.2. Water Quality in Plant Aquaponics Culture and Tilapia Aquaponics Culture Components
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Bank. Rural Population (% of Total Population). Available online: http://data.worldbank.org/indicator/SP.RUR.TOTL.ZS?view=map (accessed on 15 November 2016).
- United Nations. World Economic Situation and Prospects; United Nations: New York, NY, USA, 2016; p. 47. [Google Scholar]
- Paliwal, R.L.; Granados, G.; Lafitte, H.R.; Violic, A.D.; Marathée, J.-P. El Maíz En Los Trópicos: Mejoramiento y Producción; United Nations Food and Agriculture Organization: Roma, Italy, 2001. [Google Scholar]
- Keating, B.A.; Carberry, P.S.; Bindraban, P.S.; Asseng, S.; Meinke, H.; Dixon, J. Eco-efficient agriculture: Concepts, challenges, and opportunities. Crop Sci. 2010, 50. [Google Scholar] [CrossRef]
- CIAT. Direcciones Estratégicas: Agricultura Eco-Eficiente Para Reducir La Pobreza; Centro Internacional de Agricultura Tropical: Cali, Colombia, 2009. [Google Scholar]
- Wilkins, R. Eco-efficient approaches to land management: A case for increased integration of crop and animal production systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Watten, B.J.; Busch, R.L. Tropical production of tilapia (Sarotherodon aurea) and tomatoes (Lycopersicon esculentum) in a small-scale recirculating water system. Aquaculture 1984, 41, 271–283. [Google Scholar] [CrossRef]
- Quilleré, I.; Marie, D.; Roux, D.; Gosse, F.; Morot-Gaudry, J.F. An artificial productive ecosystem based on a fish/bacteria/plant association. 1. Design and management. Agric. Ecosyst. Environ. 1993, 47, 13–30. [Google Scholar] [CrossRef]
- Lennard, W.; Leonard, B. A comparison of three different hydroponic sub-systems (gravel bed, floating and nutrient film technique) in an aquaponic test system. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Sikawa, D.C.; Yakupitiyage, A. The hydroponic production of lettuce (Lactuca sativa) by using hybrid catfish (Clarias macrocephalus × C. Gariepinus) pond water: Potentials and constraints. Agric. Water Manag. 2010, 97, 1317–1325. [Google Scholar] [CrossRef]
- Yen, H.Y.; Chou, J.H. Water purification by oyster shell bio-medium in a recirculating aquaponic system. Ecol. Eng. 2016, 95, 229–236. [Google Scholar] [CrossRef]
- Cerozi, B.D.S.; Fitzsimmons, K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci. Hortic. 2016, 211, 277–282. [Google Scholar] [CrossRef]
- Al-Hafedh, Y.S.; Alam, A.; Beltagi, M.S. Food production and water conservation in a recirculating aquaponic system in saudi arabia at different ratios of fish feed to plants. J. World Aquac. Soc. 2008, 39, 510–520. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Wan Nik, W.B.; Hassan, A. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresour. Technol. 2010, 101, 1511–1517. [Google Scholar] [CrossRef] [PubMed]
- Emerson, K.; Russo, R.C.; Lund, R.E.; Thurston, R.V. Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. J. Fish. Res. Board Can. 1975, 32, 2379–2383. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on Tilapia and Vegetable Production in the Uvi Aquaponic System, New Dimensions on Farmed Tilapia. In Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, Manila, Philippines, 12–16 September 2004; Bolivar, R., Mair, G., Fitzsimmons, K., Eds.; Bureau of Fisheries & Aquatic Resources: Manila, Philippines, 2004. [Google Scholar]
- Aminuddin, H.; Khalip, R.; Norayah, K.; Alias, H. Urea as the nitrogen source in nft hydroponic system. Pertan. J. Trop. Agric. Sci. 1993, 16, 87–94. [Google Scholar]
- Resh, H.M. Hydroponic Food Production: A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Isla-Esquivel, M.L.; Jimenez, A.C.; Yam, L.A.R. Factores sociales que afectan el cultivo de tilapia en la península de yucatán. Ambient. Desarro. 2011, 15, 113–135. [Google Scholar]
- FAO. Anti-Hunger Programme, a Twin-Track Approach to Hunger Reduction: Priorities for National and International Action; United Nations Food and Agriculture Organization: Roma, Italy, 2003. [Google Scholar]
- Nichols, M.; Savidov, N. Aquaponics: Protein and vegetables for developing countries. In Proceedings of the I International Symposium on Sustainable Vegetable Production in Southeast Asia, Salatiga, Indonesia, 14–17 March 2011; Everaarts, A., Neeteson, J., De Neve, S., Boehme, M., Eds.; International Society for Horticultural Science: Leuven, Belgium, 2012; pp. 189–193. [Google Scholar]
- Pan, J.; Sun, H.; Nduwimana, A.; Wang, Y.; Zhou, G.; Ying, Y.; Zhang, R. Hydroponic plate/fabric/grass system for treatment of aquacultural wastewater. Aquac. Eng. 2007, 37, 266–273. [Google Scholar] [CrossRef]
- Del Sánchez Castillo, F.; Escalante Rebolledo, E.R. Hidroponia. Un Sistema de Producción de Plantas; Principios y Métodos de Cultivo, 3rd ed.; Universidad Autónoma Chapingo: Texcoco, Mexico, 1988. [Google Scholar]
- Stephens, J.M. Cabbage, Chinese--Brassica Campestris L.(Pekinensis Group), Brassica Campestris L. (Chinensis Group); University of Florida Cooperative Extension Service, EDIS: Gainesville, FL, USA, 2012. [Google Scholar]
- Kulavit, W.; Catherine, A.H.; Stuart, T.N. Won Bok & Pak Choi; Department of Agricultural and Resource Economics, C.O., University of Hawaii: Honolulu, HI, USA, 1992. [Google Scholar]
- Wong, J.W.C.; Li, G.X.; Wong, M.H. The growth of brassica chinensis in heavy-metal-contaminated sewage sludge compost from hong kong. Bioresour. Technol. 1996, 58, 309–313. [Google Scholar] [CrossRef]
- FAO. Ecocrop Database. Available online: http://ecocrop.fao.org/ecocrop/srv/en/cropView?id=547 (accessed on 17 July 2015).
- Zutić, I.; Borošić, J.; Toth, N.; Novak, B.; Dobričević, N. Agronomic and Dietary Value of Pak Choy (Brassica rapa ssp. Chinensis) in Different Growing Periods. In Proceedings of the III Balkan Symposium on Vegetables and Potatoes, Bursa, Turkey, 6–10 September 2004; International Society for Horticultural Science: Leuven, Belgium, 2007; pp. 239–243. [Google Scholar]
- Ronzio, R.A. The Encyclopedia of Nutrition and Good Health; Facts On File, Inc.: New York, NY, USA, 2003; p. 726. [Google Scholar]
- Hu, S.-Y. Food Plants of China; Chinese University Press: Hong Kong, China, 2005. [Google Scholar]
- US Department of Agriculture; A.R.S.; Nutrient Data Laboratory. National Nutrient Database for Standard Reference Release 28, Basic Report: 11116, Cabbage, Chinese (Pak-Choi), Raw. Available online: http://ndb.nal.usda.gov/ndb/foods/show/2894?manu=&fgcd= (accessed on 7 December 2015).
- Zou, Y.; Hu, Z.; Zhang, J.; Guimbaud, C.; Wang, Q.; Fang, Y. Effect of seasonal variation on nitrogen transformations in aquaponics of northern china. Ecol. Eng. 2016, 94, 30–36. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of ph on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Liang, S.; Wang, J.; Yan, R. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation. Environ. Sci. Pollut. Res. 2016, 23, 6671–6679. [Google Scholar] [CrossRef] [PubMed]
- Remy, M.; Singh, B.K.; Taylor, R. Evaluación de dos técnicas hidropónicas adaptadas para las condiciones del trópico húmedo. Tierra Trop. 2006, 2, 29–35. [Google Scholar]
- Cho, Y.Y.; Son, J.E. Effects of electrical conductivity on growth and yield of hydroponically-grown pak-choi (Brassica campestris ssp. Chinensis). Hortic. Environ. Biotechnol. 2007, 48, 97–101. [Google Scholar]
- Timmons, M.B.; Ebeling, J.M.; Wheaton, F.W.; Summerfelt, S.T.; Vinci, B.J. Recirculating Aquaculture Systems, 2nd ed.; Northeast Regional Aquaculture Center: Ithaca, NY, USA, 2002; pp. 205–258. [Google Scholar]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1995; p. 1022. [Google Scholar]
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient solutions for hydroponic systems. In Hydroponics—A Standard Methodology for Plant Biological Researches; Asao, T., Ed.; InTech: Rijeka, Croatia, 2012; p. 244. [Google Scholar]
- Liang, J.-Y.; Chien, Y.-H. Effects of feeding frequency and photoperiod on water quality and crop production in a tilapia–water spinach raft aquaponics system. Int. Biodeterior. Biodegrad. 2013, 85, 693–700. [Google Scholar] [CrossRef]
- Medina, M.; Jayachandran, K.; Bhat, M.G.; Deoraj, A. Assessing plant growth, water quality and economic effects from application of a plant-based aquafeed in a recirculating aquaponic system. Aquac. Int. 2016, 25, 415–427. [Google Scholar] [CrossRef]
- Roosta, H.R.; Hamidpour, M. Effects of foliar application of some macro- and micro-nutrients on tomato plants in aquaponic and hydroponic systems. Sci. Hortic. 2011, 129, 396–402. [Google Scholar] [CrossRef]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M. Tilapia Culture; CABI Publishing: Oxfordshire, UK, 2006; p. 277. [Google Scholar]
- Markandya, A. Water quality issues in developing countries. In Economic Development and Environmental Sustainability: New Policy Options; López, R., Toman, M.A., Eds.; Oxford University Press: New York, NY, USA, 2006; pp. 307–344. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Toulmin, C. Food security: the challenge of feeding 9 billion people. Science 2010, 327, 812. [Google Scholar] [CrossRef] [PubMed]
- Liakonis, K.M.; Waagbø, R.; Foss, A.; Breck, O.; Imsland, A.K. Effects of chronic and periodic exposures to ammonia on the eye health in juvenile atlantic halibut (Hippoglossus hippoglossus). Fish Physiol. Biochem. 2012, 38, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Benli, A.Ç.K.; Köksa, G.; Özkul, A. Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere 2008, 72, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- El-Shafai, S.A.; El-Gohary, F.A.; Nasr, F.A.; van der Steen, N.P.; Gijzen, H.J. Chronic ammonia toxicity to duckweed-fed tilapia (Oreochromis niloticus). Aquaculture 2004, 232, 117–127. [Google Scholar] [CrossRef]
- El-Sherif, M.; El-Feky, A.M. Effect of ammonia on Nile tilapia (O. niloticus) performance and some hematological and histological measures. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008; pp. 513–530. [Google Scholar]
- Atwood, H.L.; Fontenot, Q.C.; Tomasso, J.R.; Isely, J.J. Toxicity of nitrite to Nile tilapia: Effect of fish size and environmental chloride. N. Am. J. Aquac. 2001, 63, 49–51. [Google Scholar] [CrossRef]
- Yildiz, H.Y.; Köksal, G.; Borazan, G.; Benli, Ç.K. Nitrite-induced methemoglobinemia in Nile tilapia, Oreochromis niloticus. J. Appl. Ichthyol. 2006, 22, 426–427. [Google Scholar] [CrossRef]
Variable | Units | BF | NBF |
---|---|---|---|
Final fresh weight | (g/plant) | 284.6 ± 73.11 | 286.3 ± 36.97 |
Final dry weight | (g/plant) | 11.8 ± 2.74 | 11.5 ± 1.68 |
Moisture | % | 95.83 ± 0.222 | 95.99 ± 0.117 |
Fresh weight edible portion | (g/plant) | 248.8 ± 65.33 | 255.0 ± 35.64 |
Leaf height | cm | 35.0 ± 2.67 | 36.1 ± 1.65 |
Stem basal diameter | mm | 10.16 ± 1.067 | 10.29 ± 0.700 |
Parameters | BFs | BFb | NBFs | NBFb |
---|---|---|---|---|
Fish number | 22 | 24 | 22 | 24 |
Initial weight (g) | 122.3 ± 8.94 a | 208.3 ± 20.61 a | 122.5 ± 9.75 a | 208.4 ± 21.47 a |
Final weight (g) | 303.2 ± 45.87 a | 427.5 ± 45.87 a | 272.6 ± 31.24 b | 403.0 ± 53.73 a |
Specific growth rate (%) | 1.89 | 1.50 | 1.67 | 1.37 |
Feeding conversion rate | 1.38 | 1.50 | 1.62 | 1.68 |
Final density per treatment (kg/m3) | 11.28 | 10.44 | ||
Yield per treatment (kg produced/m3) | 6.16 | 5.32 |
Influent/Effluent | Treatment | Water Temperature (°C) | D.O. (mg/L) | pH | Conductivity (µS/cm) |
---|---|---|---|---|---|
Influent | BF | 29.4 ± 0.05 a | 6.94 ± 0.033 a | 8.44 ± 0.044 a | 1188 ± 17 a |
NBF | 29.73 ± 0.06 b | 6.80 ± 0.011 b | 8.35 ± 0.052 b | 1240 ± 16 b | |
Effluent | BF | 28.2 ± 0.12 a | 7.10 ± 0.057 a | 8.81 ± 0.055 a | 1125 ± 5 a |
NBF | 28.4 ± 0.12 a | 7.02 ± 0.040 a | 8.76 ± 0.089 a | 1173 ± 4 b |
Treatment | Water Temperature (°C) | D.O. (mg/L) | pH | Conductivity (µS/cm) |
---|---|---|---|---|
BF | 29.11 | 6.29 | 8.50 | 1152 |
NBF | 29.26 | 6.24 | 8.37 | 1199 |
Influent/Effluent | Treatment | NO2−-N (mg/L) | TAN (mg/L) | NH3-N(mg/L) |
---|---|---|---|---|
Influent | BF | 0.022 ± 0.0063 a,1 | 0.094 ± 0.0125 a,1 | 0.015 ± 0.0031 a,1 |
NBF | 0.051 ± 0.0071 b,1 | 0.148 ± 0.0266 b,1 | 0.021 ± 0.0028 b,1 | |
Effluent | BF | 0.019 ± 0.0045 a,1 | 0.053 ± 0.0083 a,2 | 0.017 ± 0.0029 a,1 |
NBF | 0.022 ± 0.0032 a,2 | 0.046 ± 0.0054 a,2 | 0.015 ± 0.0007 a,2 | |
Percentage removal | BF | 13.6 | 42.2 | −13.3 |
NBF | 58.8 | 64.3 | 28.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.; Escalante, E.; Valdés-Lozano, D.; Hernández, M.; Gasca-Leyva, E. Evaluation of a Semi-Intensive Aquaponics System, with and without Bacterial Biofilter in a Tropical Location. Sustainability 2017, 9, 592. https://doi.org/10.3390/su9040592
Silva L, Escalante E, Valdés-Lozano D, Hernández M, Gasca-Leyva E. Evaluation of a Semi-Intensive Aquaponics System, with and without Bacterial Biofilter in a Tropical Location. Sustainability. 2017; 9(4):592. https://doi.org/10.3390/su9040592
Chicago/Turabian StyleSilva, Laura, Edgardo Escalante, David Valdés-Lozano, Martha Hernández, and Eucario Gasca-Leyva. 2017. "Evaluation of a Semi-Intensive Aquaponics System, with and without Bacterial Biofilter in a Tropical Location" Sustainability 9, no. 4: 592. https://doi.org/10.3390/su9040592
APA StyleSilva, L., Escalante, E., Valdés-Lozano, D., Hernández, M., & Gasca-Leyva, E. (2017). Evaluation of a Semi-Intensive Aquaponics System, with and without Bacterial Biofilter in a Tropical Location. Sustainability, 9(4), 592. https://doi.org/10.3390/su9040592