Sustainable Processing of Brewers’ Spent Grain for Plant-Based Yogurt Alternatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Brewing Process
2.3. BSG Processing
2.4. BSG Extract Fermentation
2.5. Moisture Determination
2.6. pH Determination
2.7. Protein Determination
2.8. Water Activity Measurement
2.9. Colorimetric Measurements
2.10. Viscosity Measurement
2.11. Organoleptic Tests
2.12. Syneresis Measurement
2.13. Statistical Analysis
3. Results and Discussion
3.1. Moisture Determination
3.2. pH Determination
3.3. Protein Determination
3.4. Water Activity Measurement
3.5. Colorimetric Measurements
3.6. Viscosity Measurement
3.7. Organoleptic Tests
3.8. Syneresis Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BSG | Brewer’s spent grain |
BSG OKARA | Residue after separation BSG extract |
FP | Fermented plant-based beverage |
FS | Fermented plant-based beverage with sucrose |
FPG | Fermented plant-based beverage with guar gum |
FSG | Fermented plant-based beverage with guar gum and sucrose |
FPP | Fermented plant-based beverage with pectin |
FSP | Fermented plant-based beverage with pectin and sucrose |
FPK | Fermented plant-based beverage with konjac gum |
FSK | Fermented plant-based beverage konjac gum and sucrose |
References
- Morseletto, P. Targets for a Circular Economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- FAO. Thinking About the Future of Food Safety; FAO: Rome, Italy, 2022; ISBN 978-92-5-135783-5. [Google Scholar]
- TOP 10 Trends in the Food Industry for 2025—Food Market Overview—“TOP 10 Trendów w Przemyśle Spożywczym Na Rok 2025—Przegląd Rynku Spożywczego”. Available online: https://foodfakty.pl/top-10-trendow-w-przemysle-spozywczym-na-rok-2025 (accessed on 18 February 2025).
- Plant-Based Foods in Europe: How Big Is the Market? Smart Protein Project. Available online: https://smartproteinproject.eu/wp-content/uploads/Smart-Protein-Plant-based-Food-Sector-Report-2.pdf (accessed on 18 February 2025).
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-Based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of Plant-Based Milk Alternatives for Improved Flavour and Nutritional Value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef]
- Glover, A.; Hayes, H.E.; Ni, H.; Raikos, V. A Comparison of the Nutritional Content and Price between Dairy and Non-Dairy Milks and Cheeses in UK Supermarkets: A Cross Sectional Analysis. Nutr. Health 2024, 30, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Chojnacki, R. The Current State of Meat Alternatives. Available online: https://www.circana.com/intelligence/reports/2024/the-current-state-of-meat-alternatives/ (accessed on 18 February 2025).
- European Plant-Based Sales Data 2021-2023 and Early 2024—GFI Europe. Available online: https://gfieurope.org/plant-based-sales-data-2023/ (accessed on 18 February 2025).
- Jeske, S.; Zannini, E.; Arendt, E.K. Past, Present and Future: The Strength of Plant-Based Dairy Substitutes Based on Gluten-Free Raw Materials. Food Res. Int. 2018, 110, 42–51. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-Dairy Plant-Based Milk Substitutes and Fermented Dairy-Type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.E.; Stanyevic, B.; Giudice, A.; Monopoli, D.; Decarolis, N.M.; Esposito, S.; Biasucci, G. Nutrition for Children and Adolescents Who Practice Sport: A Narrative Review. Nutrients 2024, 16, 2803. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Manzoor, A.; Siddique, R. Ahmad Nutritional and Sensory Properties of Cashew Seed (Anacardium Occidentale) Milk. MCDA 2017, 1. [Google Scholar] [CrossRef]
- Bai, R.; Yang, X.; Li, L. Physicochemical and Nutritional Properties of Whole Soy Milk Yogurt: Dependence on the Strain. Food Biosci. 2025, 65, 106085. [Google Scholar] [CrossRef]
- Bernat, N.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Vegetable Milks and Their Fermented Derivative Products. Int. J. Food. Stud. 2013, 3. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ Spent Grain: A Review with an Emphasis on Food and Health. JIB 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Ikram, S.; Huang, L.; Zhang, H.; Wang, J.; Yin, M. Composition and Nutrient Value Proposition of Brewers Spent Grain. J. Food Sci. 2017, 82, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Hejna, A.; Szulc, J.; Błaszak, B. Brewers’ Spent Grain—Simply Waste or Potential Ingredient of Functional Food? Żywn. Nauka Technol. Jakość. Food Sci. Technol. Qual. 2024, 30, 5–23. [Google Scholar] [CrossRef]
- Abd EL-Moneim, R.A.; Shamsia, S.M.; EL-Deeb, A.M.; Ziena, H.M. Utilization of Brewers Spent Grain (Bsg) in Making Functional Yoghurt. JDS 2015, 6, 577–589. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ Spent Grain: Generation, Characteristics and Potential Applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Muhammed, A.A.; Thomas, K.; Hamed, U.B. Feasibility of Using Brewers Spent Grain as a Fertilizer in Agriculture. IJST 2015, 10, 23–31. [Google Scholar] [CrossRef]
- Chattaraj, S.; Mitra, D.; Chattaraj, M.; Ganguly, A.; Thatoi, H.; Mohapatra, P.K.D. Brewers’ Spent Grain as Fish Feed Ingredient: Evaluation of Bio-Safety and Analysis of Its Impact on Gut Bacteria of Cirrhinus Reba by 16S Metagenomic Sequencing. Curr. Res. Microb. Sci. 2024, 7, 100286. [Google Scholar] [CrossRef] [PubMed]
- Tidwell, J.H.; Coyle, S.D.; Rossi, W.; Rucker, K. Evaluation of Brewers Spent Grains with Different Levels of Exogenous Enzymes on the Production Performance and Body Composition of Nile Tilapia (Oreochromis Niloticus) and Channel Catfish (Ictalurus Punctatus). J. Appl. Aquac. 2023, 35, 257–272. [Google Scholar] [CrossRef]
- Connolly, A.; Piggott, C.O.; FitzGerald, R.J. Characterisation of Protein-Rich Isolates and Antioxidative Phenolic Extracts from Pale and Black Brewers’ Spent Grain. Int. J. Food Sci. Technol. 2013, 48, 1670–1681. [Google Scholar] [CrossRef]
- Qin, F.; Johansen, A.Z.; Mussatto, S.I. Evaluation of Different Pretreatment Strategies for Protein Extraction from Brewer’s Spent Grains. Ind. Crop. Prod. 2018, 125, 443–453. [Google Scholar] [CrossRef]
- Guido, L.F.; Moreira, M.M. Techniques for Extraction of Brewer’s Spent Grain Polyphenols: A Review. Food Bioprocess Technol. 2017, 10, 1192–1209. [Google Scholar] [CrossRef]
- Junttila, M.H. Extraction of Brewers’ Spent Grain in near Subcritical Conditions: A Method to Obtain High Protein Contents Extracts. J. Agric. Food Res. 2022, 10, 100378. [Google Scholar] [CrossRef]
- Erasmus, C. Dietary Fibres. US20090175993 A1, 9 July 2009. [Google Scholar]
- Kishi, S.; Kimura, T.; Minami, T.; Kobayashi, H. Protein-Rich Products of Brewer’s Spent Grain Origin. US5156877A, 20 October 1992. [Google Scholar]
- Chaudhary, V.K. High Dietary Fiber Product. US4341805A, 27 July 1982. [Google Scholar]
- Woonton, B.; Carney, J.; Jones, P.; Adulpichit, A.; Ruangwan, M.; Rees, M.; Kalitsis, J.; Quail, K. Method for Making Food Composition Having a High Plant Protein Content. WO/2018/050863, 22 March 2018. [Google Scholar]
- PN-C-04541:1978; Water and Waste Water—Determination of Dry Residue, Residue on Ignition, Loss on Ignition and Dissolved Solids, Dissolved Mineral Substances and Dissolved Volatile Substances. The Polish Committee for Standardization: Warsaw, Poland, 1978.
- Ileleji, K.E.; Garcia, A.A.; Kingsly, A.R.P.; Clementson, C.L. Comparison of Standard Moisture Loss-on-Drying Methods for the Determination of Moisture Content of Corn Distillers Dried Grains with Solubles. J. AOAC Int. 2010, 93, 825–832. [Google Scholar] [CrossRef] [PubMed]
- PN-A-86122:1968; Milk—Research Methods. The Polish Committee for Standardization: Warsaw, Poland, 1968.
- PN-EN ISO 8968-2:2004; Milk—Determination of Nitrogen Content—Part 2: Mineralization Block Method (Macro Method). The Polish Committee for Standardization: Warsaw, Poland, 2004.
- PN-A-04018:1975; Agricultural and Food Products—Determination of Nitrogen Using the Kjeldahl Method and Conversion into Protein. The Polish Committee for Standardization: Warsaw, Poland, 1975.
- Cytarska, J.; Szulc, J.; Kołodziej-Sobczak, D.; Nunes, J.A.; da Silva-Júnior, E.F.; Łączkowski, K.Z. CyreneTM as a Tyrosinase Inhibitor and Anti-Browning Agent. Food Chem. 2024, 442, 138430. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 8586:2014-03; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Sensory Evaluation Expert. The Polish Committee for Standardization: Warsaw, Poland, 2014.
- PN-ISO 4121:1998; Sensory Analysis—Methodology—Evaluation of Food Products Using Scaling Methods. The Polish Committee for Standardization: Warsaw, Poland, 1998.
- Karagül-Yüceer, Y.; Drake, M. Sensory Analysis of Yogurt. In Manufacturing Yogurt and Fermented Milks; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2006; pp. 265–278. ISBN 978-0-470-27781-2. [Google Scholar]
- Marlapati, L.; Basha, R.F.S.; Navarre, A.; Kinchla, A.J.; Nolden, A.A. Comparison of Physical and Compositional Attributes between Commercial Plant-Based and Dairy Yogurts. Foods 2024, 13, 984. [Google Scholar] [CrossRef]
- Joung, J.Y.; Lee, J.Y.; Ha, Y.S.; Shin, Y.K.; Kim, Y.; Kim, S.H.; Oh, N.S. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts. Korean J. Food Sci. Anim. Resour. 2016, 36, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Šimkovic, I.; Synytsya, A.; Uhliariková, I.; Čopíková, J. Amidated Pectin Derivatives with n-Propyl-, 3-Aminopropyl-, 3-Propanol- or 7-Aminoheptyl-Substituents. Carbohydr. Polym. 2009, 76, 602–606. [Google Scholar] [CrossRef]
- Lucatto, J.N.; da Silva-Buzanello, R.A.; de Mendonça, S.N.T.G.; Lazarotto, T.C.; Sanchez, J.L.; Bona, E.; Drunkler, D.A. Performance of Different Microbial Cultures in Potentially Probiotic and Prebiotic Yoghurts from Cow and Goat Milks. Int. J. Dairy Technol. 2020, 73, 144–156. [Google Scholar] [CrossRef]
- Pałacha, Z.; Makarewicz, M. Water activity of choosen food-stuff groups—“Aktywność wody wybranych grup produktów spożywczych. ” Postępy Tech. Przetwórstwa Spożywczego Technol. Prog. Food Process. 2011, 2, 24–29. [Google Scholar]
- Montemurro, M.; Verni, M.; Rizzello, C.G.; Pontonio, E. Design of a Plant-Based Yogurt-Like Product Fortified with Hemp Flour: Formulation and Characterization. Foods 2023, 12, 485. [Google Scholar] [CrossRef]
- Dias, S.; Castanheira, E.M.S.; Fortes, A.G.; Pereira, D.M.; Gonçalves, M.S.T. Natural Pigments of Anthocyanin and Betalain for Coloring Soy-Based Yogurt Alternative. Foods 2020, 9, 771. [Google Scholar] [CrossRef]
- Shahbandari, J.; Golkar, A.; Taghavi, S.M.; Amiri, A. Effect of Storage Period on Physicochemical, Textural, Microbial and Sensory Characteristics of Stirred Soy Yogurt. Int. J. Farming Allied Sci. 2016, 5, 476–484. [Google Scholar]
- Izadi, Z.; Nasirpour, A.; Garoosi, G.A.; Tamjidi, F. Rheological and Physical Properties of Yogurt Enriched with Phytosterol during Storage. J. Food Sci. Technol. 2015, 52, 5341–5346. [Google Scholar] [CrossRef] [PubMed]
- Soumya, M.P.; Suresh, A.; Parameswaran, R.; Nampoothiri, K.M. Physico-Chemical and Organoleptic Evaluation of Probiotic Plant-Milk Yogurt-Type Beverages as a Functional Alternative to Dairy Yogurts. Biocatal. Agric. Biotechnol. 2024, 57, 103060. [Google Scholar] [CrossRef]
- Mizrahi, S. 11—Syneresis in Food Gels and Its Implications for Food Quality. In Chemical Deterioration and Physical Instability of Food and Beverages; Skibsted, L.H., Risbo, J., Andersen, M.L., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Cambridge, UK, 2010; pp. 324–348. ISBN 978-1-84569-495-1. [Google Scholar]
- Arab, M.; Yousefi, M.; Khanniri, E.; Azari, M.; Ghasemzadeh-Mohammadi, V.; Mollakhalili-Meybodi, N. A Comprehensive Review on Yogurt Syneresis: Effect of Processing Conditions and Added Additives. J. Food Sci. Technol. 2023, 60, 1656–1665. [Google Scholar] [CrossRef]
- Cox, S.; Sandall, A.; Smith, L.; Rossi, M.; Whelan, K. Food Additive Emulsifiers: A Review of Their Role in Foods, Legislation and Classifications, Presence in Food Supply, Dietary Exposure, and Safety Assessment. Nutr. Rev. 2021, 79, 726–741. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, C.; Long, Y.; Chen, Q.; Zhang, W.; Liu, G. Food Additives: From Functions to Analytical Methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 8497–8517. [Google Scholar] [CrossRef]
- Vareltzis, P.; Adamopoulos, K.; Stavrakakis, E.; Stefanakis, A.; Goula, A.M. Approaches to Minimise Yoghurt Syneresis in Simulated Tzatziki Sauce Preparation. Int. J. Dairy Technol. 2016, 69, 191–199. [Google Scholar] [CrossRef]
- Miyaji, K.; Maruyama, H.; Kuwano, Y.; Katakura, Y.; Inoue, H.; Azuma, N. Development of a Rapid and Accurate Prediction Model for Whey Separation in Pasteurized Drinking Yogurt Caused by Long-Term Ambient Storage. Food Sci. Technol. Res. 2020, 26, 863–873. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, C.-H.-Y.; Li, W.-C.; Zhao, L.; Huang, Y.-B.; Li, H.-H.; Liu, G.; Ni, H.; Raikos, V. Physicochemical and Nutritional Properties of Yogurt Emulsion with Lycopene during Chilled Storage. J. Food Sci. Technol. 2022, 59, 4037–4044. [Google Scholar] [CrossRef]
Color Coordinate | Sugar Addition | BSG Extract | FP | FPG | FPP | FPK |
---|---|---|---|---|---|---|
L* | Plain | 50.35 a ± 0.02 | 55.56 eB ± 0.02 | 54.43 dA ± 0.24 | 51.98 bA ± 0.06 | 53.77 cB ± 0.02 |
With Sugar | - | 55.36 dA ± 0.01 | 54.05 cA ± 0.14 | 51.90 aA ± 0.010 | 53.49 bA ± 0.015 | |
a* | Plain | 5.79 b ± 0.01 | 7.03 dA ± 0.01 | 6.15 cA ± 0.09 | 6.26 cB ± 0.02 | 5.76 aB ± 0.01 |
With Sugar | - | 7.12 dB ± 0.02 | 6.03 bA ± 0.02 | 6.20 cA ± 0.01 | 5.63 aA ± 0.01 | |
b* | Plain | 13.83 a ± 0.02 | 18.29 eA ± 0.04 | 16.64 dA ± 0.24 | 15.45 bA ± 0.04 | 15.84 cB ± 0.02 |
With Sugar | - | 18.44 dB ± 0.01 | 16.31 cA ± 0.07 | 15.43 aA ± 0.02 | 15.56 bA ± 0.01 |
Sample Name | BSG Extract | FP | FS | FPG | FSG | FPP | FSP | FPK | FSK |
---|---|---|---|---|---|---|---|---|---|
BSG extract | 0.0 + | ||||||||
FP | 7.0 +++ | 0.0 + | |||||||
FS | 6.9 +++ | 0.3 + | 0.0 + | ||||||
FPG | 5.0 ++ | 2.2 + | 2.2 + | 0.0 + | |||||
FSG | 4.5 ++ | 2.7 + | 2.7 + | 0.5 + | 0.0 + | ||||
FPP | 4.8 ++ | 3.7 ++ | 3.5 ++ | 3.0 + | 2.9 + | 0.0 + | |||
FSP | 4.9 ++ | 3.8 ++ | 3.6 ++ | 3.1 ++ | 3.0 + | 0.2 + | 0.0 + | ||
FPK | 4.0 ++ | 3.3 ++ | 3.3 ++ | 1.1 + | 0.6 + | 3.1 ++ | 3.2 ++ | 0.0 + | |
FSK | 3.6 ++ | 3.7 ++ | 3.7 ++ | 1.5 + | 1.0 + | 3.2 ++ | 3.3 ++ | 0.4 + | 0.0 + |
Color |
Sugar Addition | Sample Name | |||
---|---|---|---|---|
FP | FPG | FPP | FPK | |
Plain | 0 | 0.328 bB ± 0.003 | 0.407 cA ± 0.022 | 0.208 aB ± 0.026 |
With sugar | 0 | 0.267 bA ± 0.004 | 0.463 cA ± 0.035 | 0.162 aA ± 0.008 |
Sugar Addition | Sample Name | |||
---|---|---|---|---|
FP | FPG | FPP | FPK | |
Plain | 0 | 0.295 cA ± 0.003 | 0.273 bA ± 0.007 | 0.156 aA ± 0.025 |
With sugar | 0 | 0.240 bA ± 0.003 | 0.294 cA ± 0.021 | 0.120 aA ± 0.005 |
Sugar Addition | Sample Name | |||
---|---|---|---|---|
FP | FPG | FPP | FPK | |
Plain | 0 | 0.034 aB ± 0.004 | 0.134 cA ± 0.026 | 0.051 bA ± 0.006 |
With sugar | 0 | 0.028 aA ± 0.001 | 0.168 cA ± 0.020 | 0.043 bA ± 0.004 |
Sugar Addition | Sample Name | |||
---|---|---|---|---|
FP | FPG | FPP | FPK | |
Plain | 1.76 | 2.92 | 3.80 | 2.82 |
With sugar | 2.00 | 2.44 | 4.00 | 3.28 |
Sample Name | Leakage During Fermentation and Storage [%] | |||
---|---|---|---|---|
0 h | 1 h | 24 h | 120 h | |
FP | 0.0 | 0.4 | 24.4 | 29.4 |
FS | 0.0 | 3.2 | 26.6 | 30.6 |
FPG | 0.0 | 0.0 | 1.0 | 2.1 |
FSG | 0.0 | 0.0 | 0.0 | 0.0 |
FPP | 0.0 | 0.0 | 0.0 | 0.0 |
FSP | 0.0 | 0.0 | 0.0 | 0.0 |
FPK | 0.0 | 0.0 | 0.0 | 0.2 |
FSK | 0.0 | 0.0 | 0.0 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszak, B.; Demir, İ.E.; Długosz, A.; Kołaczyk, P.; Bąk, M.; Gozdecka, G.; Kaniewski, W.; Szulc, J. Sustainable Processing of Brewers’ Spent Grain for Plant-Based Yogurt Alternatives. Sustainability 2025, 17, 4087. https://doi.org/10.3390/su17094087
Błaszak B, Demir İE, Długosz A, Kołaczyk P, Bąk M, Gozdecka G, Kaniewski W, Szulc J. Sustainable Processing of Brewers’ Spent Grain for Plant-Based Yogurt Alternatives. Sustainability. 2025; 17(9):4087. https://doi.org/10.3390/su17094087
Chicago/Turabian StyleBłaszak, Błażej, İrem Emine Demir, Anna Długosz, Paweł Kołaczyk, Małgorzata Bąk, Grażyna Gozdecka, Wojciech Kaniewski, and Joanna Szulc. 2025. "Sustainable Processing of Brewers’ Spent Grain for Plant-Based Yogurt Alternatives" Sustainability 17, no. 9: 4087. https://doi.org/10.3390/su17094087
APA StyleBłaszak, B., Demir, İ. E., Długosz, A., Kołaczyk, P., Bąk, M., Gozdecka, G., Kaniewski, W., & Szulc, J. (2025). Sustainable Processing of Brewers’ Spent Grain for Plant-Based Yogurt Alternatives. Sustainability, 17(9), 4087. https://doi.org/10.3390/su17094087