Sustainable Remediation of Polyethylene Microplastics via a Magnetite-Activated Electro-Fenton System: Enhancing Persulfate Efficiency for Eco-Friendly Pollution Mitigation
Abstract
:1. Introduction
2. Experimental Method
2.1. Materials and Reagents
2.2. Working Condition Setting
2.3. Characterization of PE MPs, Fe3O4, and Filtrate Before and After Electro-Fenton Treatment
3. Results
3.1. Effect of Operation Conditions on the Degradation of PE MPs
3.1.1. Effect of Initial PE MPs Concentration
3.1.2. Effect of Electrolyte Concentration
3.1.3. Effect of Fe3O4 Dosage
3.1.4. Effect of Time
3.2. Comparison of PE MPs Before and After Electro-Fenton Treatment
3.3. Functional Groups Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomat, R.; Rigo, A. Electrochemical production of OH· radicals and their reaction with toluene. J. Appl. Electrochem. 1976, 6, 257–261. [Google Scholar] [CrossRef]
- Tzedakis, T.; Savall, A.; Clifton, M.J. The electrochemical regeneration of Fenton’s reagent in the hydroxylation of aromatic substrates: Batch and continuous processe. J. Appl. Electrochem. 1989, 19, 911–921. [Google Scholar] [CrossRef]
- Oturan, M.A.; Peiroten, J.; Chartrin, P.; Acher, A.J. Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method. Environ. Sci. Technol. 2000, 34, 3474–3479. [Google Scholar] [CrossRef]
- Oturan, M.A.; Pinson, J.; Bizot, J.; Deprez, D.; Terlain, B. Reaction of inflammation inhibitors with chemically and electrochemically generated hydroxyl radicals. J. Electroanal. Chem. 1992, 334, 103–109. [Google Scholar] [CrossRef]
- Brillas, E.; Mur, E.; Casado, J. Iron (II) catalysis of the mineralization of aniline using a Carbon-PTFE O2-Fed cathode. J. Electrochem. Soc. 1996, 143, L49. [Google Scholar] [CrossRef]
- Lin, Y.; Huo, P.; Li, F.; Chen, X.; Yang, L.; Jiang, Y.; Zhang, Y.; Ni, B.-J.; Zhou, M. A critical review on cathode modification methods for efficient Electro-Fenton degradation of persistent organic pollutants. Chem. Eng. J. 2022, 450, 137948. [Google Scholar] [CrossRef]
- Lei, J.; Duan, P.; Liu, W.; Sun, Z.; Hu, X. Degradation of aqueous cefotaxime in electro-oxidation—Electro-Fenton—Persulfate system with Ti/CNT/SnO2–Sb–Er anode and Ni@NCNT cathode. Chemosphere 2020, 250, 126163. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Zhou, M.; Martínez-Huitle, C.A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: A critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B Environ. 2018, 235, 103–129. [Google Scholar] [CrossRef]
- Geng, J.; Zhang, H.; Zhang, Z.; Gao, J.; Wang, S.; Hu, X.; Li, J. Enhanced electro-Fenton oxidation by introducing three-phase interface with simultaneous optimization of O2 and pollutant transfer for effective tetracycline hydrochloride removal. Chem. Eng. J. 2022, 450, 137891. [Google Scholar] [CrossRef]
- Huang, H.; Zou, X.; Ji, R.; Zhang, J.; Yuan, Z.; Zhao, M.; Zhang, H.; Geng, J.; Li, J. Inducing three-phase interface to enhance hydroxyl radical production via green atomic H*-mediated electro-Fenton process for highly-efficient tetracycline degradation. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134577. [Google Scholar] [CrossRef]
- Ning, Z.; Duan, X.; Li, Y.; Zhao, X.; Chang, L. Degradation of polyvinyl chloride microplastics via electrochemical oxidation with a CeO2–PbO2 anode. J. Clean. Prod. 2023, 432, 139668. [Google Scholar] [CrossRef]
- Dong, G.; Chen, B.; Liu, B.; Hounjet, L.J.; Cao, Y.; Stoyanov, S.R.; Yang, M.; Zhang, B. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. Water Res. 2022, 211, 118047. [Google Scholar] [CrossRef]
- Zhong, S.; Zhu, Z.-S.; Duan, X.; Wang, S. Electro-Fenton-Based Membrane System for Organic Micropollutant Removal: New Trend and Prospect. ACS EST Eng. 2023, 3, 2147–2160. [Google Scholar] [CrossRef]
- Chu, Y.; Su, H.; Liu, C.; Zheng, X. Fabrication of sandwich-like super-hydrophobic cathode for the electro-Fenton degradation of cefepime: H2O2 electro-generation, degradation performance, pathway and biodegradability improvement. Chemosphere 2022, 286, 131669. [Google Scholar] [CrossRef]
- Plakas, K.V.; Sklari, S.D.; Yiankakis, D.A.; Sideropoulos, G.T.; Zaspalis, V.T.; Karabelas, A.J. Removal of organic micropollutants from drinking water by a novel electro-Fenton filter: Pilot-scale studies. Water Res. 2016, 91, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Miao, F.; Liu, Y.; Gao, M.; Yu, X.; Xiao, P.; Wang, M.; Wang, S.; Wang, X. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J. Hazard. Mater. 2020, 399, 123023. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Wang, Y. A Critical Review on Removal of Gaseous Pollutants Using Sulfate Radical-based Advanced Oxidation Technologies. Environ. Sci. Technol. 2021, 55, 9691–9710. [Google Scholar] [CrossRef] [PubMed]
- Ushani, U.; Lu, X.; Wang, J.; Zhang, Z.; Dai, J.; Tan, Y.; Wang, S.; Li, W.; Niu, C.; Cai, T.; et al. Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the–art review. Chem. Eng. J. 2020, 402, 126232. [Google Scholar] [CrossRef]
- Honarmandrad, Z.; Sun, X.; Wang, Z.; Naushad, M.; Boczkaj, G. Activated persulfate and peroxymonosulfate based advanced oxidation processes (AOPs) for antibiotics degradation—A review. Water Resour. Ind. 2023, 29, 100194. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Doumbi, R.T.; Bertrand Noumi, G.; Ngobtchok, B. Domga Tannery wastewater treatment by electro-Fenton and electro-persulfate processes using graphite from used batteries as free-cost electrode materials. Case Stud. Chem. Environ. Eng. 2022, 5, 100190. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Hussain, N.A.S.; Stafford, J.L.; Gamal El-Din, M. Electrocatalytic activation of peroxomonosulfate (PMS) under aerobic condition for the remediation of oil sands process water: Insight into one-pot synergistic coupling of PMS electro-activation and heterogeneous electro-Fenton processes. Chem. Eng. J. 2024, 480, 147737. [Google Scholar] [CrossRef]
- Okoye, C.O.; Addey, C.I.; Oderinde, O.; Okoro, J.O.; Uwamungu, J.Y.; Ikechukwu, C.K.; Okeke, E.S.; Ejeromedoghene, O.; Odii, E.C. Toxic Chemicals and Persistent Organic Pollutants Associated with Micro-and Nanoplastics Pollution. Chem. Eng. J. Adv. 2022, 11, 100310. [Google Scholar] [CrossRef]
- Liu, L.; Xu, M.; Ye, Y.; Zhang, B. On the degradation of (micro)plastics: Degradation methods, influencing factors, environmental impacts. Sci. Total Environ. 2022, 806, 151312. [Google Scholar] [CrossRef]
- Zuo, S.; Wang, Y.; Wan, J.; Ma, Y.; Yan, Z.; Tang, M. Rethinking strategies to attenuate organic pollutants: Mechanisms and challenges of catalytic pollutants polymerization. Crit. Rev. Environ. Sci. Technol. 2024, 55, 169–189. [Google Scholar] [CrossRef]
- Munoz, M.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—A review. Appl. Catal. B Environ. 2015, 176–177, 249–265. [Google Scholar] [CrossRef]
- Han, X.; Wang, F.; Zhao, Y.; Meng, J.; Tian, G.; Wang, L.; Liang, J. Recycling of iron ore tailings into magnetic nanoparticles and nanoporous materials for the remediation of water, air and soil: A review. Environ. Chem. Lett. 2022, 21, 1005–1028. [Google Scholar] [CrossRef]
- Casado, J. Minerals as catalysts of heterogeneous Electro-Fenton and derived processes for wastewater treatment: A review. Environ. Sci. Pollut. Res. 2023, 30, 76405–76420. [Google Scholar] [CrossRef]
- Wu, G.; Kong, W.; Gao, Y.; Kong, Y.; Dai, Z.; Dan, H.; Shang, Y.; Wang, S.; Yin, F.; Yue, Q.; et al. Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: Performance, salt resistance, and reaction mechanisms. Chemosphere 2022, 286, 131876. [Google Scholar] [CrossRef]
- Lin, Z.; Jin, T.; Zou, T.; Xu, L.; Xi, B.; Xu, D.; He, J.; Xiong, L.; Tang, C.; Peng, J.; et al. Current progress on plastic/microplastic degradation: Fact influences and mechanism. Environ. Pollut. 2022, 304, 119159. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, T.; Zhang, P. Fate and environmental behaviors of microplastics through the lens of free radical. J. Hazard. Mater. 2023, 453, 131401. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, J.; Chen, Z.; Yu, Z.; Xue, J.; Luan, T.; Chen, S.; Zhou, S. Mechanisms of polystyrene microplastic degradation by the microbially driven Fenton reaction. Water Res. 2022, 223, 118979. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yin, X.; Xi, X.; Guan, D.; Sun, H.; Wang, N. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media. Water Res. 2021, 196, 117016. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Mo, W.Y.; Luukkonen, T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics—A review. Sci. Total Environ. 2021, 797, 149140. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review. Chem. Eng. J. 2016, 284, 582–598. [Google Scholar] [CrossRef]
- Han, Z.; Li, S.; Yue, Y.; Tian, Y.; Wang, S.; Qin, Z.; Ji, L.; Han, D.; Jiao, W. Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8. Environ. Res. 2021, 198, 110457. [Google Scholar] [CrossRef]
- Cai, J.; Niu, T.; Shi, P.; Zhao, G. Boron-Doped Diamond for Hydroxyl Radical and Sulfate Radical Anion Electrogeneration, Transformation, and Voltage-Free Sustainable Oxidation. Small 2019, 15, 1900153. [Google Scholar] [CrossRef] [PubMed]
- Ashrafmansouri, S.-S.; Nasr Esfahany, M. Mass transfer in nanofluids: A review. Int. J. Therm. Sci. 2014, 82, 84–99. [Google Scholar] [CrossRef]
- Dalvand, A.; Gholami, M.; Joneidi, A.; Mahmoodi, N.M. Dye Removal, Energy Consumption and Operating Cost of Electrocoagulation of Textile Wastewater as a Clean Process. CLEAN—Soil Air Water 2011, 39, 665–672. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Wang, C.; Tian, X.; Chang, X.; Ren, Y.; Yu, S. Applications of surface functionalized Fe3O4 NPs-based detection methods in food safety. Food Chem. 2021, 342, 128343. [Google Scholar] [CrossRef]
- Zhao, J.; Lian, J.; Zhao, Z.; Wang, X.; Zhang, J. A Review of In-Situ Techniques for Probing Active Sites and Mechanisms of Electrocatalytic Oxygen Reduction Reactions. Nano-Micro Lett. 2022, 15, 19. [Google Scholar] [CrossRef]
- Muzenda, C.; Nkwachukwu, O.V.; Jayeola, K.D.; Zinyemba, O.; Zhou, M.; Arotiba, O.A. Heterogenous electro-Fenton degradation of sulfamethoxazole on a polyethylene glycol-coated magnetite nanoparticles catalyst. Chemosphere 2023, 339, 139698. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, M.; Jin, B.; Wünsch, U.J.; Su, Y.; Zhang, Y. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. Water Res. 2022, 211, 118046. [Google Scholar] [CrossRef] [PubMed]
- Kiendrebeogo, M.; Karimi Estahbanati, M.R.; Ouarda, Y.; Drogui, P.; Tyagi, R.D. Electrochemical degradation of nanoplastics in water: Analysis of the role of reactive oxygen species. Sci. Total Environ. 2022, 808, 151897. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, N.d.O.; Busquets, R.; Campos, L.C. Insights into the removal of microplastics and microfibres by Advanced Oxidation Processes. Sci. Total Environ. 2023, 861, 160665. [Google Scholar] [CrossRef]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Decomposition of microplastics: Emission of harmful substances and greenhouse gases in the environment. J. Environ. Chem. Eng. 2023, 11, 109047. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Sherrell, P.C.; Chen, J.; Wang, H.; Zhang, W.X.; Yang, J. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. Adv. Sci. 2022, 9, 2103764. [Google Scholar] [CrossRef]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Radovanović-Perić, F.; Bafti, A.; Ujević Bošnjak, M.; Markić, M.; Bolanča, T.; Cvetnić, M.; Kučić Grgić, D.; et al. Evaluation of Fenton, Photo-Fenton and Fenton-like Processes in Degradation of PE, PP, and PVC Microplastics. Water 2024, 16, 673. [Google Scholar] [CrossRef]
- Du, T.; Qian, L.; Shao, S.; Xing, T.; Li, T.; Wu, L. Comparison of sulfide-induced transformation of biodegradable and conventional microplastics: Mechanism and environmental fate. Water Res. 2024, 253, 121295. [Google Scholar] [CrossRef]
- Gallo-Cordova, A.; Corrales-Pérez, B.; Cabrero, P.; Force, C.; Veintemillas-Verdaguer, S.; Ovejero, J.G.; Morales, M.d.P. Magnetic Harvesting and Degradation of Microplastics using Iron Oxide Nanoflowers prepared by a Scaled-up Procedure. Chem. Eng. J. 2024, 490, 151725. [Google Scholar] [CrossRef]
- Bredács, M.; Barretta, C.; Castillon, L.F.; Frank, A.; Oreski, G.; Pinter, G.; Gergely, S. Prediction of polyethylene density from FTIR and Raman spectroscopy using multivariate data analysis. Polym. Test. 2021, 104, 107406. [Google Scholar] [CrossRef]
- Neo, E.R.K.; Low, J.S.C.; Goodship, V.; Debattista, K. Deep learning for chemometric analysis of plastic spectral data from infrared and Raman databases. Resour. Conserv. Recycl. 2023, 188, 106718. [Google Scholar] [CrossRef]
- Montano, L.; Giorgini, E.; Notarstefano, V.; Notari, T.; Ricciardi, M.; Piscopo, M.; Motta, O. Raman Microspectroscopy evidence of microplastics in human semen. Sci. Total Environ. 2023, 901, 165922. [Google Scholar] [CrossRef]
- Pei, W.; Hu, R.; Liu, H.; Wang, L.; Lai, Y. Advanced Raman spectroscopy for nanoplastics analysis: Progress and perspective. TrAC Trends Anal. Chem. 2023, 166, 117188. [Google Scholar] [CrossRef]
- Cheng, F. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 2005, 26, 729–738. [Google Scholar] [CrossRef]
- Chu, M.; Shao, Y.; Peng, J.; Dai, X.; Li, H.; Wu, Q.; Shi, D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 2013, 34, 4078–4088. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Liu, S.; Zhang, W.; Yi, K.; Zhang, C.; Pang, H.; Huang, D.; Huang, J.; Li, X. Recent advances on microplastic aging: Identification, mechanism, influence factors, and additives release. Sci. Total Environ. 2023, 889, 164035. [Google Scholar] [CrossRef]
- Ma, J.; Cao, Y.; Fan, L.; Xie, Y.; Zhou, X.; Ren, Q.; Yang, X.; Gao, X.; Feng, Y. Degradation characteristics of polybutylene adipate terephthalic acid (PBAT) and its effect on soil physicochemical properties: A comparative study with several polyethylene (PE) mulch films. J. Hazard. Mater. 2023, 456, 131661. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Fatemeh Musavi, S.; Habibi, M.; Maleki, R.; Golgoli, M.; Zargar, M.; Dumée, L.F.; Baroutian, S.; Razmjou, A. Molecular mechanisms of microplastics degradation: A review. Sep. Purif. Technol. 2023, 309, 122906. [Google Scholar] [CrossRef]
- Kiendrebeogo, M.; Karimi Estahbanati, M.R.; Khosravanipour Mostafazadeh, A.; Drogui, P.; Tyagi, R.D. Treatment of microplastics in water by anodic oxidation: A case study for polystyrene. Environ. Pollut. 2021, 269, 116168. [Google Scholar] [CrossRef]
- Atrei, A.; Lesiak-Orlowska, B.; Tóth, J. Magnetite nanoparticles functionalized with citrate: A surface science study by XPS and ToF-SIMS. Appl. Surf. Sci. 2022, 602, 154366. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, Y.; Pan, Z.; Zeng, Z.; Fan, W.; Hu, J.; Zhang, Z.; Ma, J.; Zhou, Y.; Ma, J. Comparative study of Fe(II)/sulfite, Fe(II)/PDS and Fe(II)/PMS for p-arsanilic acid treatment: Efficient organic arsenic degradation and contrasting total arsenic removal. Water Res. 2024, 249, 120967. [Google Scholar] [CrossRef] [PubMed]
Raman Shift [cm−1] | |||||
---|---|---|---|---|---|
CH2 | 2847 | 1438 | 1295 | 1130 | 1062 |
CH3 | 2881 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, W.; Tian, T.; Cheng, X.; Zhu, D.; Yuan, L. Sustainable Remediation of Polyethylene Microplastics via a Magnetite-Activated Electro-Fenton System: Enhancing Persulfate Efficiency for Eco-Friendly Pollution Mitigation. Sustainability 2025, 17, 3559. https://doi.org/10.3390/su17083559
Gao W, Tian T, Cheng X, Zhu D, Yuan L. Sustainable Remediation of Polyethylene Microplastics via a Magnetite-Activated Electro-Fenton System: Enhancing Persulfate Efficiency for Eco-Friendly Pollution Mitigation. Sustainability. 2025; 17(8):3559. https://doi.org/10.3390/su17083559
Chicago/Turabian StyleGao, Weimin, Tian Tian, Xiangju Cheng, Dantong Zhu, and Lirong Yuan. 2025. "Sustainable Remediation of Polyethylene Microplastics via a Magnetite-Activated Electro-Fenton System: Enhancing Persulfate Efficiency for Eco-Friendly Pollution Mitigation" Sustainability 17, no. 8: 3559. https://doi.org/10.3390/su17083559
APA StyleGao, W., Tian, T., Cheng, X., Zhu, D., & Yuan, L. (2025). Sustainable Remediation of Polyethylene Microplastics via a Magnetite-Activated Electro-Fenton System: Enhancing Persulfate Efficiency for Eco-Friendly Pollution Mitigation. Sustainability, 17(8), 3559. https://doi.org/10.3390/su17083559