Quantifying Global Cooperation in the Sustainable Development Goals
Abstract
1. Introduction
2. Methods
2.1. Data Collection and Standardization
2.2. Within-Group and Between-Group Changes of SDG Indicators
2.3. Synergistic Effects and Synergy Contributions of SDG Indicators
3. Results
3.1. Within-Group Changes Across Different Groups
3.2. Gross Synergy
3.3. Synergy Contributions from Different Groups
4. Discussion
4.1. Recommendations
4.2. Limitation and Prospect
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, F.; Wang, H.; Tzachor, A.; Hidalgo, C.A.; Schandl, H.; Zhang, Y.; Zhang, J.; Chen, W.-Q.; Zhao, Y.; Zhu, Y.-G.; et al. The Disparities and Development Trajectories of Nations in Achieving the Sustainable Development Goals. Nat. Commun. 2025, 16, 1107. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fu, B.; Wang, S.; Song, S.; Lusseau, D.; Liu, Y.; Xu, Z.; Liu, J. Bleak Prospects and Targeted Actions for Achieving the Sustainable Development Goals. Sci. Bull. 2023, 68, 2838–2848. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fu, B.; Wang, S.; Song, S.; Li, Y.; Xu, Z.; Wei, Y.; Liu, J. Decoupling of SDGs Followed by Re-Coupling as Sustainable Development Progresses. Nat. Sustain. 2022, 5, 452–459. [Google Scholar] [CrossRef]
- Leal Filho, W.; Wall, T.; Barbir, J.; Alverio, G.N.; Dinis, M.A.P.; Ramirez, J. Relevance of International Partnerships in the Implementation of the UN Sustainable Development Goals. Nat. Commun. 2022, 13, 613. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Wang, Y.; Cui, X.; Dong, J.; Gu, P.; Hao, Y.; Xue, K.; Duan, H.; Xia, A.; et al. Overlooked Uneven Progress across Sustainable Development Goals at the Global Scale: Challenges and Opportunities. Innovation 2024, 5, 100573. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Chau, S.N.; Dietz, T.; Li, C.; Wan, L.; Zhang, J.; Zhang, L.; Li, Y.; Chung, M.G.; et al. Impacts of International Trade on Global Sustainable Development. Nat. Sustain. 2020, 3, 964–971. [Google Scholar] [CrossRef]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef]
- Xiao, H.; Bao, S.; Ren, J.; Xu, Z.; Xue, S.; Liu, J. Global Transboundary Synergies and Trade-Offs among Sustainable Development Goals from an Integrated Sustainability Perspective. Nat. Commun. 2024, 15, 500. [Google Scholar] [CrossRef]
- Xu, Z.; Chau, S.N.; Chen, X.; Zhang, J.; Li, Y.; Dietz, T.; Wang, J.; Winkler, J.A.; Fan, F.; Huang, B.; et al. Assessing Progress towards Sustainable Development over Space and Time. Nature 2020, 577, 74–78. [Google Scholar] [CrossRef]
- Li, R.; Guo, J.; Wang, Q. Impact of Foreign Aid on the Ecological Sustainability of Sub-Saharan African Countries. Environ. Impact Assess. Rev. 2022, 95, 106779. [Google Scholar] [CrossRef]
- Mary, S.; Mishra, A.K. Humanitarian Food Aid and Civil Conflict. World Dev. 2020, 126, 104713. [Google Scholar] [CrossRef]
- Wu, X.; Pan, A.; Fei, R. Three-Dimensional Heterogeneity Analysis of Climate Aid’s Carbon Reduction Effect. J. Environ. Manag. 2021, 289, 112524. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Ries, J. Aid for Trade and Greenfield Investment. World Dev. 2016, 84, 206–218. [Google Scholar] [CrossRef]
- Cardwell, R.; Ghazalian, P.L. COVID-19 and International Food Assistance: Policy Proposals to Keep Food Flowing. World Dev. 2020, 135, 105059. [Google Scholar] [CrossRef]
- Kidd, S.; McGowan, L. Constructing a Ladder of Transnational Partnership Working in Support of Marine Spatial Planning: Thoughts from the Irish Sea. J. Environ. Manag. 2013, 126, 63–71. [Google Scholar] [CrossRef]
- Lindner, R. Green Hydrogen Partnerships with the Global South. Advancing an Energy Justice Perspective on “Tomorrow’s Oil”. Sustain. Dev. 2023, 31, 1038–1053. [Google Scholar] [CrossRef]
- Shi, S.; Yin, J. Global Research on Carbon Footprint: A Scientometric Review. Environ. Impact Assess. Rev. 2021, 89, 106571. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Lee, C.-C.; Li, J. Structural Characteristics and Determinants of an International Green Technological Collaboration Network. J. Clean. Prod. 2021, 324, 129258. [Google Scholar] [CrossRef]
- John, C.K.; Ajibade, F.O.; Ajibade, T.F.; Kumar, P.; Fadugba, O.G.; Adelodun, B. The Impact of International Agreements and Government Policies on Collaborative Management of Environmental Pollution and Carbon Emissions in the Transportation Sector. Environ. Impact Assess. Rev. 2025, 114, 107930. [Google Scholar] [CrossRef]
- Najarzadeh, R.; Dargahi, H.; Agheli, L.; Khameneh, K.B. Kyoto Protocol and Global Value Chains: Trade Effects of an International Environmental Policy. Environ. Dev. 2021, 40, 100659. [Google Scholar] [CrossRef]
- Miller, V.V.; Crespy, C.T.; Loess, K.H.; Renau, J.A. Western Hemispheric Trade Agreements and Sustainability: Lesson from Butterflies, Hummingbirds, and Salty Anchovies. Sustain. Dev. 2010, 18, 220–228. [Google Scholar] [CrossRef]
- Polo-Villanueva, F.D.; Sarker, P.K.; Giessen, L.; Burns, S.L. How Do International Donors Influence Regional Environmental Governance? The Case of the Amazon Cooperation Treaty. Environ. Dev. 2025, 55, 101204. [Google Scholar] [CrossRef]
- Liu, K.; Raisolsadat, A.; Wang, X.; Van Dau, Q. Quantitative Assessment of The Group of Seven’s Collaboration in Sustainable Development Goals. Nat. Commun. 2024, 15, 7274. [Google Scholar] [CrossRef] [PubMed]
- Pedercini, M.; Arquitt, S.; Collste, D.; Herren, H. Harvesting Synergy from Sustainable Development Goal Interactions. Proc. Natl. Acad. Sci. USA 2019, 116, 23021–23028. [Google Scholar] [CrossRef] [PubMed]
- Aly, E.; Elsawah, S.; Ryan, M.J. A Review and Catalogue to the Use of Models in Enabling the Achievement of Sustainable Development Goals (SDG). J. Clean. Prod. 2022, 340, 130803. [Google Scholar] [CrossRef]
- Hirai, T.; Comim, F. Measuring the Sustainable Development Goals: A Poset Analysis. Ecol. Indic. 2022, 145, 109605. [Google Scholar] [CrossRef]
- Pradhan, P.; Subedi, D.R.; Khatiwada, D.; Joshi, K.K.; Kafle, S.; Chhetri, R.P.; Dhakal, S.; Gautam, A.P.; Khatiwada, P.P.; Mainaly, J.; et al. The COVID-19 Pandemic Not Only Poses Challenges, but Also Opens Opportunities for Sustainable Transformation. Earth’s Future 2021, 9, e2021EF001996. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, X.; Gao, L.; Wang, T.; Liu, B.; Fang, D.; Gao, Y. Progress towards the Sustainable Development Goals Has Been Slowed by Indirect Effects of the COVID-19 Pandemic. Commun. Earth Env. 2023, 4, 184. [Google Scholar] [CrossRef]
- Fujimori, S.; Hasegawa, T.; Takahashi, K.; Dai, H.; Liu, J.-Y.; Ohashi, H.; Xie, Y.; Zhang, Y.; Matsui, T.; Hijioka, Y. Measuring the Sustainable Development Implications of Climate Change Mitigation. Environ. Res. Lett. 2020, 15, 085004. [Google Scholar] [CrossRef]
- Fuldauer, L.I.; Thacker, S.; Haggis, R.A.; Fuso-Nerini, F.; Nicholls, R.J.; Hall, J.W. Targeting Climate Adaptation to Safeguard and Advance the Sustainable Development Goals. Nat. Commun. 2022, 13, 3579. [Google Scholar] [CrossRef]
- Yu, C.; Shen, W.; Zhang, Z. Assessing Progress toward Sustainable Development in China and Its Impact on Human Well-Being. Environ. Impact Assess. Rev. 2025, 110, 107729. [Google Scholar] [CrossRef]
- Chen, L.; Shuai, C.; Chen, X.; Zhao, B. A Data-Driven Framework for Assessing Global Progress towards Sustainable Development Goals. Sustain. Prod. Consum. 2025, 60, 217–228. [Google Scholar] [CrossRef]
- van Puijenbroek, P.J.T.M.; Beusen, A.H.W.; Bouwman, A.F.; Ayeri, T.; Strokal, M.; Hofstra, N. Quantifying Future Sanitation Scenarios and Progress towards SDG Targets in the Shared Socioeconomic Pathways. J. Environ. Manag. 2023, 346, 118921. [Google Scholar] [CrossRef] [PubMed]
- Kuc-Czarnecka, M.; Markowicz, I.; Sompolska-Rzechuła, A. SDGs Implementation, Their Synergies, and Trade-Offs in EU Countries—Sensitivity Analysis-Based Approach. Ecol. Indic. 2023, 146, 109888. [Google Scholar] [CrossRef]
- Saladini, F.; Betti, G.; Ferragina, E.; Bouraoui, F.; Cupertino, S.; Canitano, G.; Gigliotti, M.; Autino, A.; Pulselli, F.M.; Riccaboni, A.; et al. Linking the Water-Energy-Food Nexus and Sustainable Development Indicators for the Mediterranean Region. Ecol. Indic. 2018, 91, 689–697. [Google Scholar] [CrossRef]
- Zhan, X.; Zhao, Y.; Zhang, H.; Long, Y.; Shao, C. Spatiotemporal Variation and Regional Disparities Analysis of County-Level Sustainable Development in China. Sustain. Prod. Consum. 2025, 57, 1–15. [Google Scholar] [CrossRef]
- Zhao, W.; Yin, C.; Hua, T.; Meadows, M.E.; Li, Y.; Liu, Y.; Cherubini, F.; Pereira, P.; Fu, B. Achieving the Sustainable Development Goals in the Post-Pandemic Era. Humanit. Soc. Sci. Commun. 2022, 9, 258. [Google Scholar] [CrossRef]
- Shumilova, O.; Tockner, K.; Sukhodolov, A.; Khilchevskyi, V.; De Meester, L.; Stepanenko, S.; Trokhymenko, G.; Hernández-Agüero, J.A.; Gleick, P. Impact of the Russia–Ukraine Armed Conflict on Water Resources and Water Infrastructure. Nat. Sustain. 2023, 6, 578–586. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, K.; Hu, Y.; Jiao, J.; Wang, S. Unveiling the Impact of Geopolitical Conflict on Oil Prices: A Case Study of the Russia-Ukraine War and Its Channels. Energy Econ. 2023, 126, 106956. [Google Scholar] [CrossRef]
- Pereira, P.; Zhao, W.; Symochko, L.; Inacio, M.; Bogunovic, I.; Barcelo, D. The Russian—Ukrainian Armed Conflict Will Push Back the Sustainable Development Goals. Geogr. Sustain. 2022, 3, 277–287. [Google Scholar] [CrossRef]
- Cao, M.; Chen, M.; Zhang, J.; Pradhan, P.; Guo, H.; Fu, B.; Li, Y.; Bai, Y.; Chang, L.; Chen, Y.; et al. Spatio-Temporal Changes in the Causal Interactions among Sustainable Development Goals in China. Humanit. Soc. Sci. Commun. 2023, 10, 450. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Zhao, W.; Meadows, M.E.; Fu, B. Finding Pathways to Synergistic Development of Sustainable Development Goals in China. Humanit. Soc. Sci. Commun. 2022, 9, 21. [Google Scholar] [CrossRef]
- Liu, Q.; Li, F.; Dong, S.; Cheng, H.; Liang, L.; Xia, B. Spatial-Temporal Heterogeneity of Sustainable Development Goals and Their Interactions and Linkages in the Eurasian Continent. Sustain. Prod. Consum. 2024, 52, 151–165. [Google Scholar] [CrossRef]
- Friedman, J.; York, H.; Graetz, N.; Woyczynski, L.; Whisnant, J.; Hay, S.I.; Gakidou, E. Measuring and Forecasting Progress towards the Education-Related SDG Targets. Nature 2020, 580, 636–639. [Google Scholar] [CrossRef]
- Guo, T.; Fang, Q.; Jiang, X.; Zacarias, W.B.M.; Ioris, A.A.R. Evaluation of China’s Marine Sustainable Development Based on PSR and SDG14: Synergy-Tradeoff Analysis and Scenario Simulation. Environ. Impact Assess. Rev. 2025, 111, 107753. [Google Scholar] [CrossRef]
- Song, W.; Cao, S.; Du, M.; He, Z. Aligning Territorial Spatial Planning with Sustainable Development Goals: A Comprehensive Analysis of Production, Living, and Ecological Spaces in China. Ecol. Indic. 2024, 160, 111816. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; He, G.; Wang, C.; Yuan, J.; Cao, X. Spatial Variability of Sustainable Development Goals in China: A Provincial Level Evaluation. Environ. Dev. 2020, 35, 100483. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, W.; Lin, X.; Li, Z.; Zhang, Y. Nonlinear El Niño Impacts on the Global Economy under Climate Change. Nat. Commun. 2023, 14, 5887. [Google Scholar] [CrossRef]
- Eyzaguirre, I.A.L.; Iwama, A.Y.; Fernandes, M.E.B. Integrating a Conceptual Framework for the Sustainable Development Goals in the Mangrove Ecosystem: A Systematic Review. Environ. Dev. 2023, 47, 100895. [Google Scholar] [CrossRef]
- Guo, H.; Liang, D.; Sun, Z.; Chen, F.; Wang, X.; Li, J.; Zhu, L.; Bian, J.; Wei, Y.; Huang, L.; et al. Measuring and Evaluating SDG Indicators with Big Earth Data. Sci. Bull. 2022, 67, 1792–1801. [Google Scholar] [CrossRef]
- Fuso Nerini, F.; Mazzucato, M.; Rockström, J.; van Asselt, H.; Hall, J.W.; Matos, S.; Persson, Å.; Sovacool, B.; Vinuesa, R.; Sachs, J. Extending the Sustainable Development Goals to 2050—A Road Map. Nature 2024, 630, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Khan, H.Z.; Bakshi, S. Determinants and Consequences of Sustainable Development Goals Disclosure: International Evidence. J. Clean. Prod. 2024, 434, 140021. [Google Scholar] [CrossRef]
- D’Adamo, I.; Gastaldi, M.; Morone, P. Economic Sustainable Development Goals: Assessments and Perspectives in Europe. J. Clean. Prod. 2022, 354, 131730. [Google Scholar] [CrossRef]
- Gong, M.; Yu, K.; Xu, Z.; Xu, M.; Qu, S. Unveiling Complementarities between National Sustainable Development Strategies through Network Analysis. J. Environ. Manag. 2024, 350, 119531. [Google Scholar] [CrossRef] [PubMed]
- Nazneen, S.; Hong, X.; Ud Din, N.; Jamil, B. Infrastructure-Driven Development and Sustainable Development Goals: Subjective Analysis of Residents’ Perception. J. Environ. Manag. 2021, 294, 112931. [Google Scholar] [CrossRef]
- Shuai, C.; Yu, L.; Chen, X.; Zhao, B.; Qu, S.; Zhu, J.; Liu, J.; Miller, S.A.; Xu, M. Principal Indicators to Monitor Sustainable Development Goals. Environ. Res. Lett. 2021, 16, 124015. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Fu, B.; Wang, S.; Wei, Y.; Li, Y. Bundling Regions for Promoting Sustainable Development Goals. Environ. Res. Lett. 2022, 17, 044021. [Google Scholar] [CrossRef]
- Pandey, P.C.; Pandey, M. Highlighting the Role of Agriculture and Geospatial Technology in Food Security and Sustainable Development Goals. Sustain. Dev. 2023, 31, 3175–3195. [Google Scholar] [CrossRef]
- Pham-Truffert, M.; Metz, F.; Fischer, M.; Rueff, H.; Messerli, P. Interactions among Sustainable Development Goals: Knowledge for Identifying Multipliers and Virtuous Cycles. Sustain. Dev. 2020, 28, 1236–1250. [Google Scholar] [CrossRef]
- Greenland, S.J.; Saleem, M.; Misra, R.; Nguyen, N.; Mason, J. Reducing SDG Complexity and Informing Environmental Management Education via an Empirical Six-Dimensional Model of Sustainable Development. J. Environ. Manag. 2023, 344, 118328. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Shu, K. The Coupling and Coordination Assessment of Food-Water-Energy Systems in China Based on Sustainable Development Goals. Sustain. Prod. Consum. 2023, 35, 338–348. [Google Scholar] [CrossRef]
- Ranjbari, M.; Shams Esfandabadi, Z.; Zanetti, M.C.; Scagnelli, S.D.; Siebers, P.-O.; Aghbashlo, M.; Peng, W.; Quatraro, F.; Tabatabaei, M. Three Pillars of Sustainability in the Wake of COVID-19: A Systematic Review and Future Research Agenda for Sustainable Development. J. Clean. Prod. 2021, 297, 126660. [Google Scholar] [CrossRef] [PubMed]
- van der Waal, J.W.H.; Thijssens, T.; Maas, K. The Innovative Contribution of Multinational Enterprises to the Sustainable Development Goals. J. Clean. Prod. 2021, 285, 125319. [Google Scholar] [CrossRef]
- Diaz-Sarachaga, J.M.; Jato-Espino, D.; Castro-Fresno, D. Is the Sustainable Development Goals (SDG) Index an Adequate Framework to Measure the Progress of the 2030 Agenda? Sustain. Dev. 2018, 26, 663–671. [Google Scholar] [CrossRef]
- Warchold, A.; Pradhan, P.; Thapa, P.; Putra, M.P.I.F.; Kropp, J.P. Building a Unified Sustainable Development Goal Database: Why Does Sustainable Development Goal Data Selection Matter? Sustain. Dev. 2022, 30, 1278–1293. [Google Scholar] [CrossRef]
- Baltruszewicz, M.; Steinberger, J.K.; Ivanova, D.; Brand-Correa, L.I.; Paavola, J.; Owen, A. Household Final Energy Footprints in Nepal, Vietnam and Zambia: Composition, Inequality and Links to Well-Being. Environ. Res. Lett. 2021, 16, 025011. [Google Scholar] [CrossRef]
- Ofori, E.K.; Ozturk, I.; Bekun, F.V.; Alhassan, A.; Gimba, O.J. Synthesizing the Role of Technological Innovation on Sustainable Development and Climate Action: Does Governance Play a Role in Sub-Saharan Africa? Environ. Dev. 2023, 47, 100900. [Google Scholar] [CrossRef]
- Chen, S.; Cui, C.; Dong, J.; Qu, A.; Shao, C. Implementation of the Sustainable Development Goals in Urban Agglomeration: Progress and Synergies. Environ. Impact Assess. Rev. 2026, 116, 108102. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, W.; Pradhan, P.; Gao, S.; Su, C.; Skene, K.R.; Fu, B. Nonlinear and Weak Interactions among Sustainable Development Goals (SDGs) Drive China’s SDGs Growth Rate below Expectations. Environ. Impact Assess. Rev. 2025, 115, 107990. [Google Scholar] [CrossRef]
- Cho, H.; Ackom, E. Artificial Intelligence (AI)-Driven Approach to Climate Action and Sustainable Development. Nat. Commun. 2025, 16, 1228. [Google Scholar] [CrossRef]
- Li, F.; Shuai, C.; Xu, Z.; Chen, X.; Wang, C.; Zhao, B.; Qu, S.; Xu, M. Machine Learning-Enhanced Assessment of Urban Sustainable Development Goals Progress. Cities 2025, 158, 105718. [Google Scholar] [CrossRef]
- Firoiu, D.; Ionescu, G.H.; Cismaș, L.M.; Vochița, L.; Cojocaru, T.M.; Bratu, R.-Ștefan; Firoiu, D.; Ionescu, G.H.; Cismaș, L.M.; Vochița, L.; et al. Can Europe Reach Its Environmental Sustainability Targets by 2030? A Critical Mid-Term Assessment of the Implementation of the 2030 Agenda. Sustainability 2023, 15, 16650. [Google Scholar] [CrossRef]
- Gebara, C.H.; Thammaraksa, C.; Hauschild, M.; Laurent, A. Selecting Indicators for Measuring Progress towards Sustainable Development Goals at the Global, National and Corporate Levels. Sustain. Prod. Consum. 2024, 44, 151–165. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, W.; Hou, P.; Peng, K.; Deng, Y.; Wang, X. Changes in the Ecosystem Service Importance of the Seven Major River Basins in China during the Implementation of the Millennium Development Goals (2000–2015) and Sustainable Development Goals (2015–2020). J. Clean. Prod. 2023, 433, 139787. [Google Scholar] [CrossRef]
- Sundarasen, S.; Rajagopalan, U.; Zyznarska-Dworczak, B. Sustainability Reporting as a Governance Tool for Sustainable Development Goals (SDGs): A Bibliometric and Content Analysis. Sustainability 2025, 17, 4784. [Google Scholar] [CrossRef]
- Alhathlaul, N.; Lakhouit, A.; Abdalla, G.M.T.; Alghamdi, A.; Shaban, M.; Alshahir, A.; Alshahr, S.; Alali, I.; Mutlaq Alshammari, F. Assessing Waste Management Using Machine Learning Forecasting for Sustainable Development Goal Driven. Sustainability 2025, 17, 8654. [Google Scholar] [CrossRef]
- Çelik, S.; Öztürk, Ö.F.; Akkucuk, U.; Şaşmaz, M.Ü.; Çelik, S.; Öztürk, Ö.F.; Akkucuk, U.; Şaşmaz, M.Ü. Global Sustainability Performance and Regional Disparities: A Machine Learning Approach Based on the 2025 SDG Index. Sustainability 2025, 17, 7411. [Google Scholar] [CrossRef]








| Indicator Code in This Study | Indicator Code in SDR 2025 | Indicator Definitions | Target Direction | |
|---|---|---|---|---|
| 1 | 1.a | sdg1_wpc | Poverty headcount ratio at 2.15 US Dollars($)/day | − |
| 2 | 1.b | sdg1_lmicpov | Poverty headcount ratio at 3.65 US Dollars($)/day | − |
| 3 | 2.a | sdg2_undernsh | Prevalence of undernourishment | − |
| 4 | 2.b | sdg2_obesity | Prevalence of obesity, BMI ≥ 30 | − |
| 5 | 2.c | sdg2_trophic | Human Trophic Level | − |
| 6 | 2.d | sdg2_crlyld | Cereal yield | + |
| 7 | 2.e | sdg2_snmi | Sustainable Nitrogen Management Index | + |
| 8 | 3.a | sdg3_matmort | Maternal mortality ratio | − |
| 9 | 3.b | sdg3_neonat | Neonatal mortality rate | − |
| 10 | 3.c | sdg3_u5mort | Mortality rate, under-5 | − |
| 11 | 3.d | sdg3_tb | Incidence of tuberculosis | − |
| 12 | 3.e | sdg3_hiv | New HIV infections | − |
| 13 | 3.f | sdg3_ncds | Age-standardized death rate due to cardiovascular disease, cancer, diabetes, or chronic respiratory disease in adults aged 30 to 70 years | − |
| 14 | 3.g | sdg3_traffic | Traffic deaths | − |
| 15 | 3.h | sdg3_lifee | Life expectancy at birth | + |
| 16 | 3.i | sdg3_fertility | Adolescent fertility rate | − |
| 17 | 3.j | sdg3_vac | Surviving infants who received 2 WHO-recommended vaccines | + |
| 18 | 4.a | sdg4_preprim | Participation rate in pre-primary organized learning | + |
| 19 | 4.b | sdg4_primary | Net primary enrollment rate | + |
| 20 | 4.c | sdg4_second | Lower secondary completion rate | + |
| 21 | 5.a | sdg5_familypl | Demand for family planning satisfied by modern methods | + |
| 22 | 5.b | sdg5_edat | Ratio of female-to-male mean years of education received | + |
| 23 | 5.c | sdg5_lfpr | Ratio of female-to-male labor force participation rate | + |
| 24 | 5.d | sdg5_parl | Seats held by women in national parliament | + |
| 25 | 6.a | sdg6_water | Population using at least basic drinking water services | + |
| 26 | 6.b | sdg6_sanita | Population using at least basic sanitation services | + |
| 27 | 6.c | sdg6_freshwat | Freshwater withdrawal | − |
| 28 | 6.d | sdg6_scarcew | Scarce water consumption embodied in imports | − |
| 29 | 6.e | sdg6_safewat | Population using safely managed water services | + |
| 30 | 6.f | sdg6_safesan | Population using safely managed sanitation services | + |
| 31 | 7.a | sdg7_elecac | Population with access to electricity | + |
| 32 | 7.b | sdg7_cleanfuel | Population with access to clean fuels and technology for cooking | + |
| 33 | 7.c | sdg7_co2twh | CO2 emissions from fuel combustion per total electricity output | − |
| 34 | 7.d | sdg7_renewcon | Renewable energy share in total final energy consumption | + |
| 35 | 8.a | sdg8_unemp | Unemployment rate | − |
| 36 | 8.b | sdg8_impacc | Fatal work-related accidents embodied in imports | − |
| 37 | 9.a | sdg9_intuse | Population using the internet | + |
| 38 | 9.b | sdg9_mobuse | Mobile broadband subscriptions | + |
| 39 | 9.c | sdg9_articles | Articles published in academic journals | + |
| 40 | 9.d | sdg9_rdex | Expenditure on research and development | + |
| 41 | 9.e | sdg9_patents | Total patent applications by applicant’s origin | + |
| 42 | 10.a | sdg10_gini | Gini coefficient | − |
| 43 | 10.b | sdg10_palma | Palma ratio | − |
| 44 | 11.a | sdg11_slums | Proportion of urban population living in slums | − |
| 45 | 11.b | sdg11_pm25 | Annual mean concentration of PM2.5 | − |
| 46 | 11.c | sdg11_pipedwat | Access to improved water source, piped | + |
| 47 | 12.a | sdg12_pollprod | Production-based air pollution | − |
| 48 | 12.b | sdg12_pollimp | Air pollution associated with imports | − |
| 49 | 12.c | sdg12_nprod | Production-based nitrogen emissions | − |
| 50 | 12.d | sdg12_nimport | Nitrogen emissions associated with imports | − |
| 51 | 13.a | sdg13_co2gcp | CO2 emissions from fossil fuel combustion and cement production | − |
| 52 | 13.b | sdg13_ghgimport | GHG emissions embodied in imports | − |
| 53 | 14.a | sdg14_cpma | Mean area that is protected in marine sites important to biodiversity | + |
| 54 | 14.b | sdg14_fishstocks | Fish caught from overexploited or collapsed stocks | − |
| 55 | 14.c | sdg14_trawl | Fish caught by trawling or dredging | − |
| 56 | 14.d | sdg14_discard | Fish caught that are then discarded | − |
| 57 | 15.a | sdg15_cpta | Mean area that is protected in terrestrial sites important to biodiversity | + |
| 58 | 15.b | sdg15_cpfa | Mean area that is protected in freshwater sites important to biodiversity | + |
| 59 | 15.c | sdg15_redlist | Red List Index of species survival | + |
| 60 | 16.a | sdg16_homicides | Homicides | − |
| 61 | 16.b | sdg16_detain | Unsentenced detainees | − |
| 62 | 16.c | sdg16_cpi | Corruption Perceptions Index | + |
| 63 | 16.d | sdg16_prison | Persons held in prison | − |
| 64 | 17.a | sdg17_govex | Government spending on health and education | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Zhang, Y. Quantifying Global Cooperation in the Sustainable Development Goals. Sustainability 2025, 17, 11283. https://doi.org/10.3390/su172411283
Liu R, Zhang Y. Quantifying Global Cooperation in the Sustainable Development Goals. Sustainability. 2025; 17(24):11283. https://doi.org/10.3390/su172411283
Chicago/Turabian StyleLiu, Rongqing, and Ying Zhang. 2025. "Quantifying Global Cooperation in the Sustainable Development Goals" Sustainability 17, no. 24: 11283. https://doi.org/10.3390/su172411283
APA StyleLiu, R., & Zhang, Y. (2025). Quantifying Global Cooperation in the Sustainable Development Goals. Sustainability, 17(24), 11283. https://doi.org/10.3390/su172411283
