The Threshold of Soil Organic Carbon and Topography Reveal Degradation Patterns in Brazilian Pastures: Evidence from Rio de Janeiro State
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Activity Flow
2.3. Land Use Mapping Data
3. Results
3.1. Evolution of Land Use (1985–1998)
3.2. Characterization, Spatial and Temporal Distribution of SOC
3.3. SOC Thresholds and Clustering
- Cluster 1 (red): This group primarily includes points located in areas with low to moderate elevation, characterized by low to moderate SOC values.
- Cluster 2 (green): This cluster groups points located in very low elevation and corresponds to the highest SOC values recorded in the dataset. The high SOC values in this cluster coincide with the areas of highest carbon accumulation identified in the spatial analysis of SOC distribution (Figure 8).
- Cluster 3 (blue): This cluster comprises samples from areas of higher elevation, where SOC values range from low to moderate.
4. Discussion
4.1. Land Transformation and Dynamics of SOC
4.2. Spatial Variability of Soil Organic Carbon
4.3. SOC Thresholds and Pasture Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SOC | Soil organic carbon |
| GHG | Greenhouse gas |
| ICLF | Integrated crop-livestock-forestry |
| IBGE | Brazilian institute of geography and statistic |
| LULC | Land use and cover |
| SIBCs | Brazilian Soil Information System |
Appendix A



| Map Name/Product | Description | Source/Author | Download Address |
|---|---|---|---|
| State and municipal boundaries | Regional boundaries of Brazilian states and municipal divisions (Scale 1:250,000) | IBGE | https://www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/10871-pedologia.html?t=downloads (accessed on 10 January 2025) |
| Soil types | Soil mapping of Brazil (Scale 1:250,000) | IBGE | https://www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/10871-pedologia.html?t=downloads (accessed on 9 March 2025) |
| Land use and land cover | Brazilian annual land use and land cover mapping project - Collection 9.0 (Spatial resolution 30 m × 30 m) | MapBiomas | https://brasil.mapbiomas.org/colecoes-mapbiomas/ (accessed on 9 March 2025) |
| Map of biome boundaries | Boundaries between the six Brazilian biomes, Amazon, Atlantic Forest, Caatinga, Cerrado, Pantanal, and Pampa, compatible with a scale of 1:250,000 | IBGE | https://www.ibge.gov.br/geociencias/informacoes-ambientais/estudos-ambientais/15842-biomas.html?t=acesso-ao-produto (accessed on 10 March 2025) |
| Altimetric map | Digital model representing the altitudes of the topographic surface aggregated to the existing geographical elements on it. Data downloaded in vector format with a scale of 1:250,000. | IBGE | https://www.ibge.gov.br/geociencias/modelos-digitais-de-superficie/modelos-digitais-de-superficie/10856-mde-modelo-digital-de-elevacao.html?=&t=o-que-e (accessed on 9 May 2025) |
| Climate map | The Climate Map, on a scale of 1:500,000, represents the different climate zones of Brazil, grouped by temperature and humidity. | IBGE | https://www.ibge.gov.br/geociencias/informacoes-ambientais/climatologia/15817-clima.html (accessed on 9 May 2025) |
| Soil sampling points | The Brazilian soil information system incorporates soil samples and profiles from all over Brazil, providing a detailed description of the morphological, physical, chemical, and mineralogical characteristics of these profiles with their geographical locations. The information and data contained in this system were generated by technical and scientific projects conducted by Embrapa. | EMBRAPA | https://www.sisolos.cnptia.embrapa.br/ (accessed on 10 January 2025) |
| Land use and land cover | MapBiomas is a collaborative science and technology project that produces annual land use and land cover maps in Brazil. | Mapbiomas | https://plataforma.brasil.mapbiomas.org (accessed on 10 January 2025) |
| Land Use and Cover | Description |
|---|---|
| Forest | This class is characterized by the following biomes: Cerrado and Atlantic Forest |
| Herbaceous and Shrubby Vegetation | This class is characterized by flooded fields and marshy areas and by grassland formation |
| Pasture | Predominantly planted pasture areas, directly related to farming activities. |
| Agriculture | Areas occupied by agricultural crops. |
| Forest Plantation | Tree species planted for commercial purposes (e.g., pine, eucalyptus, araucaria). |
| Mosaic of Agriculture and Pasture | Areas of agricultural use where it was not possible to distinguish between pasture and agriculture, and soil exposed during preparation for planting or harvesting. |
| Non-vegetated area | Areas with a significant density of buildings and roads, including areas free of buildings, mining, infrastructure, and industries. |
| Water | Rivers, lakes, dams, reservoirs, and other bodies of water |
| Land Use | Areas (Hectares) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| 1985 | 1986 | 1987 | 1988 | 1989 | 1991 | 1995 | 1997 | 1998 | |
| Forest | 2,459,117 | 2,438,830 | 2,413,150 | 2,412,189 | 2,415,573 | 2,407,540 | 2,422,640 | 2,427,538 | 2,423,699 |
| Herbaceous and Shrubby vegetation | 191,077 | 188,055 | 187,543 | 183,612 | 182,605 | 185,427 | 177,814 | 181,645 | 182,363 |
| Pasture | 1,749,512 | 1,773,814 | 1,783,661 | 1,799,998 | 1,819,905 | 1,879,863 | 1,910,010 | 1,923,245 | 1,943,990 |
| Agriculture | 2,980,671 | 2,982,002 | 3,023,103 | 3,060,670 | 3,111,938 | 3,144,491 | 3,192,877 | 3,198,332 | 3,201,766 |
| Forest Plantation | 367,512 | 3,523,921 | 3,711,694 | 4,818,231 | 5,834,259 | 6,184,901 | 7,854,868 | 8,144,966 | 851,583 |
| Mosaico f uses | 961,740 | 939,959 | 932,326 | 902,203 | 858,459 | 786,654 | 722,742 | 692,710 | 669,724 |
| Non vegetated areas | 324,125 | 3,424,723 | 344,319 | 349,450 | 355,954 | 361,465 | 388,514 | 398,899 | 405,148 |
| Year | Average | Median | Minimum | Max | Coefficient of Variation |
|---|---|---|---|---|---|
| 1984 | 14.77 | 13.25 | 0 | 46.8 | 60.40 |
| 1985 | 11.17 | 10 | 2.5 | 35.1 | 59.3 |
| 1986 | 13.40 | 13.6 | 1.9 | 30.5 | 45.87 |
| 1987 | 18.47 | 11.7 | 5.4 | 59.5 | 79.2 |
| 1988 | 23.2 | 12.4 | 6.8 | 125.3 | 116.1 |
| 1989 | 17.22 | 12.5 | 4.8 | 92.8 | 115.35 |
| 1991 | 17.91 | 18.2 | 2.9 | 35.1 | 47.3 |
| 1995 | 9.31 | 9.25 | 1.87 | 15.6 | 41.63 |
| 1997 | 12.35 | 11.65 | 2.38 | 20.9 | 34.87 |
| 1998 | 16.08 | 12 | 2.05 | 45.35 | 74.26 |
References
- Reynolds, S. Grasslands: Developments Opportunities Perspectives; Frame, J., Ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- FAO; ITPS. Recarbonizing Global Soils: A Technical Manual of Recommended Sustainable Soil Management; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Dondini, M.; Martin, M.; De Camillis, C.; Uwizeye, A.; Soussana, J.-F.; Robinson, T.; Steinfeld, H. Global Assessment of Soil Carbon in Grasslands; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Carbon Sequestration in Grassland Soils. In Carbon Sequestration in Agricultural Ecosystems; Springer International Publishing: Cham, Switzerland, 2018; pp. 175–209. [Google Scholar] [CrossRef]
- FAO. State of the World’s Forests 2007; FAO: Rome, Italy, 2007. [Google Scholar]
- Li, C.; Fultz, L.M.; Moore-Kucera, J.; Acosta-Martínez, V.; Horita, J.; Strauss, R.; Zak, J.; Calderón, F.; Weindorf, D. Soil Carbon Sequestration Potential in Semi-Arid Grasslands in the Conservation Reserve Program. Geoderma 2017, 294, 80–90. [Google Scholar] [CrossRef]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Soil Organic Carbon Stock in Grasslands: Effects of Inorganic Fertilizers, Liming and Grazing in Different Climate Settings. J. Environ. Manag. 2018, 223, 74–84. [Google Scholar] [CrossRef]
- Tessema, B.; Sommer, R.; Piikki, K.; Söderström, M.; Namirembe, S.; Notenbaert, A.; Tamene, L.; Nyawira, S.; Paul, B. Potential for Soil Organic Carbon Sequestration in Grasslands in East African Countries: A Review. Grassl. Sci. 2020, 66, 135–144. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.F.A.; Wilson, B.R. Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Sci. Soc. Am. J. 2015, 79, 1741–1751. [Google Scholar] [CrossRef]
- Delonge, M.; Basche, A. Managing Grazing Lands to Improve Soils and Promote Climate Change Adaptation and Mitigation: A Global Synthesis. Renew. Agric. Food Syst. 2018, 33, 267–278. [Google Scholar] [CrossRef]
- Meyer, R.S.; Cullen, B.R.; Whetton, P.H.; Robertson, F.A.; Eckard, R.J. Potential Impacts of Climate Change on Soil Organic Carbon and Productivity in Pastures of South Eastern Australia. Agric. Syst. 2018, 167, 34–46. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting Global Grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Pasquini Neto, R.; Furtado, A.J.; da Silva, G.V.; Lobo, A.A.G.; Abdalla Filho, A.L.; Brunetti, H.B.; Bosi, C.; Pedroso, A.dF.; Pezzopane, J.R.M.; Oliveira, P.P.A.; et al. Forage Accumulation and Nutritive Value in Extensive, Intensive, and Integrated Pasture-Based Beef Cattle Production Systems. Crop Pasture Sci. 2024, 75, CP24043. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative Assessment of the Contri-butions of Climate Change and Human Activities on Global Grassland Degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- Fujii, K.; Sukartiningsih; Hayakawa, C.; Inagaki, Y.; Kosaki, T. Effects of Land Use Change on Turnover and Storage of Soil Organic Matter in a Tropical Forest. Plant Soil 2020, 446, 425–439. [Google Scholar] [CrossRef]
- Popin, G.V.; de Resende, M.E.B.; Locatelli, J.L.; Santos, R.S.; Siqueira-Neto, M.; Brando, P.M.; Neill, C.; Cerri, C.E.P. Land-Use Change and Deep-Soil Carbon Distribution on the Brazilian Amazon-Cerrado Agricultural Frontier. Agric. Ecosyst. Environ. 2025, 381, 109451. [Google Scholar] [CrossRef]
- Oliveira, D.M.d.S.; Paustian, K.; Davies, C.A.; Cherubin, M.R.; Franco, A.L.C.; Cerri, C.C.; Cerri, C.E.P. Soil Carbon Changes in Areas Undergoing Expansion of Sugarcane into Pastures in South-Central Brazil. Agric. Ecosyst. Environ. 2016, 228, 38–48. [Google Scholar] [CrossRef]
- Dias-Filho, M.B. Degradação de Pastagens: O Que é e Como Evitar, 1st ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Abdalla, K.; Mutema, M.; Chivenge, P.; Everson, C.; Chaplot, V. Grassland Degradation Significantly Enhances Soil CO2 Emission. Catena 2018, 167, 284–292. [Google Scholar] [CrossRef]
- Mendes, T.J.; Siqueira, D.S.; de Figueiredo, E.B.; Bordonal, R.d.O.; Moitinho, M.R.; Marques Júnior, J.; La Scala, N. Soil Carbon Stock Estimations: Methods and a Case Study of the Maranhão State, Brazil. Environ. Dev. Sustain. 2021, 23, 16410–16427. [Google Scholar] [CrossRef]
- FAO. Land Statistics: Global, Regional and Country Trends, 1961–2018; FAO: Rome, Italy, 2020. [Google Scholar]
- Mapbiomas. Projeto MapBiomas–Mapeamento Anual de Cobertura e Uso Da Terra Do Brasil. A Evolução Da Pastagem Nos Últimos 36 Anos-Coleção 6. 2020. Available online: https://brasil.mapbiomas.org/map/colecao-6/ (accessed on 12 June 2025).
- Damian, J.M.; da Silva Matos, E.; e Pedreira, B.C.; de Faccio Carvalho, P.C.; Premazzi, L.M.; Williams, S.; Paustian, K.; Cerri, C.E.P. Predicting Soil C Changes after Pasture Intensification and Diversification in Brazil. Catena 2021, 202, 105238. [Google Scholar] [CrossRef]
- Tavanti, R.F.R.; Montanari, R.; Panosso, A.R.; La Scala, N.; Chiquitelli Neto, M.; Freddi, O.d.S.; Paz González, A.; de Carvalho, M.A.C.; Soares, M.B.; Tavanti, T.R.; et al. What Is the Impact of Pasture Reform on Organic Carbon Compartments and CO2 Emissions in the Brazilian Cerrado? Catena 2020, 194, 104702. [Google Scholar] [CrossRef]
- do Valle Júnior, R.F.; Siqueira, H.E.; Valera, C.A.; Oliveira, C.F.; Sanches Fernandes, L.F.; Moura, J.P.; Pacheco, F.A.L. Diagnosis of Degraded Pastures Using an Improved NDVI-Based Remote Sensing Approach: An Application to the Environmental Protection Area of Uberaba River Basin (Minas Gerais, Brazil). Remote Sens. Appl. 2019, 14, 20–33. [Google Scholar] [CrossRef]
- Jank, L.; Barrios, S.C.; do Valle, C.B.; Simeão, R.M.; Alves, G.F. The Value of Improved Pastures to Brazilian Beef Production. Crop Pasture Sci. 2014, 65, 1132–1137. [Google Scholar] [CrossRef]
- FAO. Country Pasture/Forage Resource Profiles Brazil; FAO: Rome, Italy, 2006. [Google Scholar]
- Brasil. Plano ABC-Agricultura de Baixa Emissão de Carbono. 2010. Available online: https://www.gov.br/agricultura/pt-br/assuntos/sustentabilidade/planoabc-abcmais/plano-abc (accessed on 29 May 2025).
- Boddey, R.M.; Xavier, D.F.; Alves, B.J.R.; Urquiaga, S. Brazilian Agriculture: The Transition to Sustainability. J. Crop Prod. 2003, 9, 593–621. [Google Scholar] [CrossRef]
- Ministério da Ciência, Tecnologia e Investigação (MCTI). Relatório de Referência–Setor Uso Da Terra, Mudança Do Uso Da Terra e Florestas. Terceiro Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa; Ministério da Ciência e Tecnologia: Brasília, Brazil, 2015. [Google Scholar]
- de Mello, K.; Taniwaki, R.H.; de Paula, F.R.; Valente, R.A.; Randhir, T.O.; Macedo, D.R.; Leal, C.G.; Rodrigues, C.B.; Hughes, R.M. Multiscale Land Use Impacts on Water Quality: Assessment, Planning, and Future Perspectives in Brazil. J. Environ. Manag. 2020, 270, 110879. [Google Scholar] [CrossRef]
- Tarré, R.; Macedo, R.; Cantarutti, R.B.; Rezende, C.d.P.; Pereira, J.M.; Ferreira, E.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. The Effect of the Presence of a Forage Legume on Nitrogen and Carbon Levels in Soils under Brachiaria Pastures in the Atlantic Forest Region of the South of Bahia, Brazil. Plant Soil 2001, 234, 15–26. [Google Scholar] [CrossRef]
- Vicente, L.C.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C. Soil Carbon Stocks of Ultisols under Different Land Use in the Atlantic Rainforest Zone of Brazil. Geoderma Reg. 2016, 7, 330–337. [Google Scholar] [CrossRef]
- Feltran-Barbieri, R.; Féres, J.G. Degraded Pastures in Brazil: Improving Livestock Production and Forest Restoration. R. Soc. Open Sci. 2021, 8, 201854. [Google Scholar] [CrossRef]
- da Rocha Junior, P.R.; Andrade, F.V.; Mendonça, E.d.S.; Donagemma, G.K.; Fernandes, R.B.A.; Bhattharai, R.; Kalita, P.K. Soil, Water, and Nutrient Losses from Management Alternatives for Degraded Pasture in Brazilian Atlantic Rainforest Biome. Sci. Total Environ. 2017, 583, 53–63. [Google Scholar] [CrossRef]
- Lal, R.; Smith, P.; Jungkunst, H.F.; Mitsch, W.J.; Lehmann, J.; Nair, P.K.R.; McBratney, A.B.; de Moraes Sá, J.C.; Schneider, J.; Zinn, Y.L.; et al. The Carbon Sequestration Potential of Terrestrial Ecosystems. J. Soil Water Conserv. 2018, 73, 145A–152A. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; Courcelles, V.d.R.d.; Singh, K.; et al. The Knowns, Known Unknowns and Unknowns of Sequestration of Soil Organic Carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Zeferino, L.B.; Lustosa Filho, J.F.; dos Santos, A.C.; Cerri, C.E.P.; de Oliveira, T.S. Soil Carbon and Nitrogen Stocks Following Forest Conversion to Long-Term Pasture in Amazon Rainforest-Cerrado Transition Environment. Catena 2023, 231, 107346. [Google Scholar] [CrossRef]
- Walker, W.S.; Gorelik, S.R.; Baccini, A.; Aragon-Osejo, J.L.; Josse, C.; Meyer, C.; Macedo, M.N.; Augusto, C.; Rios, S.; Katan, T.; et al. The Role of Forest Conversion, Degradation, and Disturbance in the Carbon Dynamics of Amazon Indigenous Territories and Protected Areas. Proc. Natl. Acad. Sci. USA 2020, 117, 3015–3025. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Elmore, A.J.; Olander, L.P.; Martin, R.E.; Harris, A.T. Grazing Systems, Ecosystem Responses, and Global Change. Annu. Rev. Environ. Resour. 2004, 29, 261–299. [Google Scholar] [CrossRef]
- Fonte, S.J.; Nesper, M.; Hegglin, D.; Velásquez, J.E.; Ramirez, B.; Rao, I.M.; Bernasconi, S.M.; Bünemann, E.K.; Frossard, E.; Oberson, A. Pasture Degradation Impacts Soil Phosphorus Storage via Changes to Aggregate Associated Soil Organic Matter in Highly Weathered Tropical Soils. Soil Biol. Biochem. 2014, 68, 150–157. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.; Tang, Z.; Shangguan, Z. Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef]
- Rittl, T.F.; Oliveira, D.; Cerri, C.E.P. Soil Carbon Stock Changes under Different Land Uses in the Amazon. Geoderma Reg. 2017, 10, 138–143. [Google Scholar] [CrossRef]
- Resende, T.M.; Rosolen, V.; Bernoux, M.; Brito, J.L.S.; Borges, E.N.; Almeida, F.P. Atributos Físicos e Carbono Orgânico Em Solo Sob Cerrado Convertido Para Pastagem e Sistema Misto. Soc. Nat. 2015, 27, 501–513. [Google Scholar] [CrossRef]
- Zago, L.M.S.; Ramalho, W.P.; Caramori, S. Does Crop-Livestock-Forest Systems Contribute to Soil Quality in Brazilian Savannas? Floresta E Ambiente 2019, 26, 2–10. [Google Scholar] [CrossRef]
- De Azevedo, T.R.; Costa, C.; Brandão, A.; Dos Santos Cremer, M.; Piatto, M.; Tsai, D.S.; Barreto, P.; Martins, H.; Sales, M.; Galuchi, T.; et al. SEEG Initiative Estimates of Brazilian Greenhouse Gas Emissions from 1970 to 2015. Sci. Data 2018, 5, 180045. [Google Scholar] [CrossRef]
- Mielniczuk, J. Matéria Orgânica e a Sustentabilidade de Sistemas Agrícolas. In Fundamentos da Matéria Orgânica do Solo: Ecossistemas Tropicais Subtropicais; Metropole: Porto Alegre, Brazil, 2008; pp. 7–18. [Google Scholar]
- Moreira, R.P. Qualidade Do Solo Sob Sistemas Agroflorestais, Pastagens e Agrícolas No Bioma Mata Atlântica. Ph.D. Thesis, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, Brazil, 2019. [Google Scholar]
- Segnini, A.; Xavier, A.A.P.; Otaviani-Junior, P.L.; Oliveira, P.P.A.; Pedroso, A.d.F.; Praes, M.F.F.M.; Ro-drigues, P.H.M.; Milori, D.M.B.P. Soil Carbon Stock and Humification in Pastures under Different Levels of Intensification in Brazil. Sci. Agric. 2019, 76, 33–40. [Google Scholar] [CrossRef]
- Barbosa, L.G.; Alves, M.A.S.; Grelle, C.E.V. Actions against Sustainability: Dismantling of the Environmental Policies in Brazil. Land Use Policy 2021, 104, 105384. [Google Scholar] [CrossRef]
- Fernandes, V.; Andreoli, C.V.; Bruna, G.C.; Philippi, A. History and Evolution of the Environmental Man-agement System in Brazil. História Ambient. Latinoam. Caribena 2021, 11, 275–310. [Google Scholar] [CrossRef]
- Losekann, C.; Paiva, R.L. Brazilian Environmental Policy: Shared Responsibility and Dismantling. Ambiente Soc. 2024, 27, e01764. [Google Scholar] [CrossRef]
- Moreira, K.S.; Junqueira Júnior, J.A.; Sousa, P.E.d.O.; Moreira, H.S.; Baliza, D.P. A Evolução Da Legislação Ambiental No Contexto Histórico Brasileiro. Res. Soc. Dev. 2021, 10, e14010212087. [Google Scholar] [CrossRef]
- IBGE-Instituto Brasileiro de Geografia e Estatística. Censo Demográfico de 2022; IBGE: Rio de Janeiro, Brazil, 2022. Available online: https://censo2022.ibge.gov.br/panorama/ (accessed on 15 May 2025).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Clas-sification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Barros Ozório, J.M.; Rosset, J.S.; Schiavo, J.A.; Panachuki, E.; Souza, C.B.d.S.; Menezes, R.d.S.; Ximenes, T.S.; Castilho, S.C.d.P.; Marra, L.M. Estoque de carbono e agregação do solo sob fragmentos florestais no bioma mata atlântica e cerrado. Rev. Bras. Ciências Ambient. 2019, 53, 97–116. [Google Scholar] [CrossRef]
- Filho, A.; Lumbreras, J.; Wittern, K.; Lemos, A. Levantamento de Reconhecimento de Baixa Intensidade dos Solos do Estado do Rio de Janeiro; Embrapa Solos: Rio de Janeiro, Brazil, 2003. [Google Scholar]
- Sattler, D.; Seliger, R.; Nehren, U.; de Torres, F.N.; da Silva, A.S.; Raedig, C.; Hissa, H.R.; Heinrich, J. Pasture Degradation in South East Brazil: Status, Drivers and Options for Sustainable Land Use Under Climate Change. In Climate Change Adaptation in Latin America: Managing Vulnerability, Fostering Resilience; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–17. [Google Scholar] [CrossRef]
- Ferraz, J.B.S.; de Felício, P.E. Production Systems—An Example from Brazil. Meat Sci. 2010, 84, 238–243. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Agropecuário 2006; IBGE: Rio de Janeiro, Brazil, 2007. Available online: https://ftp.ibge.gov.br/Censo_Agropecuario/Censo_Agropecuario_2006/Segunda_Apuracao/censoagro2006_2aapuracao.pdf (accessed on 5 November 2025).
- Bernoux, M.; da Conceição Santana Carvalho, M.; Volkoff, B.; Cerri, C.C. Brazil’s Soil Carbon Stocks. Soil Sci. Soc. Am. J. 2002, 66, 888–896. [Google Scholar] [CrossRef]
- Embrapa. Manual de Métodos de Análise de Solo, 2nd ed.; Claessen, M.E.C., Ed.; Embrapa Solos: Rio de Janeiro, Brazil, 1997. [Google Scholar]
- Cooper, M.; Mendes, L.M.S.; Silva, W.L.C.; Sparovek, G. A National Soil Profile Database for Brazil Available to International Scientists. Soil Sci. Soc. Am. J. 2005, 69, 649–652. [Google Scholar] [CrossRef]
- MapBiomas. Mapbiomas Brasil. 2024. Available online: https://brasil.mapbiomas.org/estatisticas/ (accessed on 12 May 2025).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Available online: https://www.ibge.gov.br/ (accessed on 25 June 2025).
- Müller, M.M.L.; Guimarães, M.F.; Desjardins, T.; Mitja, D. The Relationship between Pasture Degradation and Soil Properties in the Brazilian Amazon: A Case Study. Agric. Ecosyst. Environ. 2004, 103, 279–288. [Google Scholar] [CrossRef]
- RStudio Team. RStudio. Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2022. [Google Scholar]
- dos Santos, C.A.; Rezende, C.d.P.; Machado Pinheiro, É.F.; Pereira, J.M.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M. Changes in Soil Carbon Stocks after Land-Use Change from Native Vegetation to Pastures in the Atlantic Forest Region of Brazil. Geoderma 2019, 337, 394–401. [Google Scholar] [CrossRef]
- Assunção, S.A.; Pereira, M.G.; Rosset, J.S.; Berbara, R.L.L.; García, A.C. Carbon Input and the Structural Quality of Soil Organic Matter as a Function of Agricultural Management in a Tropical Climate Region of Brazil. Sci. Total Environ. 2019, 658, 901–911. [Google Scholar] [CrossRef]
- Froufe, L.C.M.; Rachwal, M.F.G.; Seoane, C.E.S. Potencial de Sistemas Agroflorestais Multiestrata Para Sequestro de Carbono Em Áreas de Ocorrência de Floresta Atlântica. Pesqui. Florest. Bras. 2011, 31, 143–154. [Google Scholar] [CrossRef]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumariño, L.; Barrios, E. Agroforestry Boosts Soil Health in the Humid and Sub-Humid Tropics: A Meta-Analysis. Agric. Ecosyst. Environ. 2020, 295, 106899. [Google Scholar] [CrossRef]
- Dortzbach, D.; Pereira, M.G.; Blainski, É.; González, A.P. Estoque de C e Abundância Natural de 13C Em Razão Da Conversão de Áreas de Floresta e Pastagem Em Bioma Mata Atlântica. Rev. Bras. Cienc. Solo 2015, 39, 1643–1660. [Google Scholar] [CrossRef]
- Conceição, M.C.G.d.; Matos, E.S.; Bidone, E.D.; Rodrigues, R.d.A.R.; Cordeiro, R.C. Changes in Soil Carbon Stocks under Integrated Crop-Livestock-Forest System in the Brazilian Amazon Region. Agric. Sci. 2017, 8, 904–913. [Google Scholar] [CrossRef]
- Trumbore, S.; Barbosa de Camargo, P. Soil Carbon Dynamics. Geophysical Monograph Series. 2009, 186, 451–462. [Google Scholar] [CrossRef]
- de Freitas, I.C.; Alves, M.A.; Pena, A.N.L.; Ferreira, E.A.; Frazão, L.A. Changing the Land Use from De-graded Pasture into Integrated Farming Systems Enhance Soil Carbon Stocks in the Cerrado Biome. Acta Sci. Agron. 2023, 46, e63601. [Google Scholar] [CrossRef]
- Ross, C.W.; Grunwald, S.; Myers, D.B. Spatiotemporal Modeling of Soil Organic Carbon Stocks across a Subtropical Region. Sci. Total Environ. 2013, 461–462, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Friess, D.A.; Yando, E.S.; Alemu I, J.B.; Wong, L.-W.; Soto, S.D.; Bhatia, N. Ecosystem Services and Disservices of Mangrove Forests and Salt Marshes. In Oceanography and Marine Biology; CRC Press: Boca Raton, FL, USA, 2020; pp. 107–141. [Google Scholar] [CrossRef]
- Seliger, R.; Sattler, D.; Soares da Silva, A.; da Costa, G.C.P.; Heinrich, J. Rehabilitation of Degraded Sloped Pastures: Lessons Learned in Itaocara, Rio de Janeiro. In Strategies and Tools for a Sustainable Rural Rio de Janeiro; Springer International Publishing: Cham, Switzerland, 2019; pp. 391–404. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Ogle, S.M.; Cerri, C.E.P.; Cerri, C.C. Effect of Grassland Management on Soil Carbon Se-questration in Rondônia and Mato Grosso States, Brazil. Geoderma 2009, 149, 84–91. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Paustian, K.; Bernoux, M.; Victoria, R.L.; Melillo, J.M.; Cerri, C.C. Modeling Changes in Soil Organic Matter in Amazon Forest to Pasture Conversion with the Century Model. Glob. Change Biol. 2004, 10, 815–832. [Google Scholar] [CrossRef]
- de Oliveira, D.C.; Maia, S.M.F.; Freitas, R.d.C.A.; Cerri, C.E.P. Changes in Soil Carbon and Soil Carbon Sequestration Potential under Different Types of Pasture Management in Brazil. Reg. Environ. Change 2022, 22, 87. [Google Scholar] [CrossRef]
- Adame, M.F.; Kauffman, J.B.; Medina, I.; Gamboa, J.N.; Torres, O.; Caamal, J.P.; Reza, M.; Herrera-Silveira, J.A. Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLoS ONE 2013, 8, e56569. [Google Scholar] [CrossRef] [PubMed]
- DelVecchia, A.G.; Bruno, J.F.; Benninger, L.; Alperin, M.; Banerje, O.; De Dios Morales, J. Organic Carbon Inventories in Natural and Restored Ecuadorian Mangrove Forests. PeerJ 2014, 2014, e388. [Google Scholar] [CrossRef]
- Rahman, M.S.; Donoghue, D.N.M.; Bracken, L.J. Is Soil Organic Carbon Underestimated in the Largest Mangrove Forest Ecosystems? Evidence from the Bangladesh Sundarbans. Catena 2021, 200, 105159. [Google Scholar] [CrossRef]
- Mariano Neto, M.; da Silva, J.B. Estimativas Dos Estoque De Carbono Em Ecossistema De Manguezal No Brasil: Uma Revisão. Geoambiente On-Line. 2023, 45, 206–228. Available online: https://revistas.ufj.edu.br/geoambiente/article/view/75044 (accessed on 7 September 2025).
- Pan, S.; Shi, J.; Peng, Y.; Wang, Z.; Wang, X. Soil Organic Carbon Pool Distribution and Stability with Grazing and Topography in a Mongolian Grassland. Agric. Ecosyst. Environ. 2023, 348, 108431. [Google Scholar] [CrossRef]
- Garcia-Pausas, J.; Casals, P.; Camarero, L.; Huguet, C.; Sebastià, M.T.; Thompson, R.; Romanyà, J. Soil Organic Carbon Storage in Mountain Grasslands of the Pyrenees: Effects of Climate and Topography. Biogeochemistry 2007, 82, 279–289. [Google Scholar] [CrossRef]
- Ma, L.; Lv, X.; Cao, N.; Wang, Z.; Zhou, Z.; Meng, Y. Alterations of Soil Labile Organic Carbon Fractions and Biological Properties under Different Residue-Management Methods with Equivalent Carbon Input. Appl. Soil Ecol. 2021, 161, 103821. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bila, F.A., Júnior; Pacheco, F.A.L.; Valera, C.A.; da Costa, A.M.; Mendonça-Santos, M.d.L.; Fernandes, L.F.S.; Moura, J.P. The Threshold of Soil Organic Carbon and Topography Reveal Degradation Patterns in Brazilian Pastures: Evidence from Rio de Janeiro State. Sustainability 2025, 17, 10764. https://doi.org/10.3390/su172310764
Bila FA Júnior, Pacheco FAL, Valera CA, da Costa AM, Mendonça-Santos MdL, Fernandes LFS, Moura JP. The Threshold of Soil Organic Carbon and Topography Reveal Degradation Patterns in Brazilian Pastures: Evidence from Rio de Janeiro State. Sustainability. 2025; 17(23):10764. https://doi.org/10.3390/su172310764
Chicago/Turabian StyleBila, Fernando Arão, Júnior, Fernando António Leal Pacheco, Carlos Alberto Valera, Adriana Monteiro da Costa, Maria de Lourdes Mendonça-Santos, Luís Filipe Sanches Fernandes, and João Paulo Moura. 2025. "The Threshold of Soil Organic Carbon and Topography Reveal Degradation Patterns in Brazilian Pastures: Evidence from Rio de Janeiro State" Sustainability 17, no. 23: 10764. https://doi.org/10.3390/su172310764
APA StyleBila, F. A., Júnior, Pacheco, F. A. L., Valera, C. A., da Costa, A. M., Mendonça-Santos, M. d. L., Fernandes, L. F. S., & Moura, J. P. (2025). The Threshold of Soil Organic Carbon and Topography Reveal Degradation Patterns in Brazilian Pastures: Evidence from Rio de Janeiro State. Sustainability, 17(23), 10764. https://doi.org/10.3390/su172310764

