Sustainable Yield and Economic Efficiency of Para Grass (Brachiaria mutica) Using Composted Cow Manure
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Characteristics
2.2. Plant Material
2.3. Experimental Design and Treatments
2.4. Planting and Crop Management
2.5. Measurements
2.6. Statistical Analysis
3. Results
3.1. Tiller Density per Clump
3.2. Plant Height Development
3.3. Chemical Composition
3.4. Biomass and Nutrient Yields
3.5. The Production Costs of Para Grass
4. Discussion
4.1. Promotive Effects and Mechanisms of Composted Cow Manure on Para Grass Growth and Yield
4.1.1. Tiller Density per Clump
4.1.2. Plant Height Development
4.1.3. Chemical Composition
4.1.4. Biomass and Nutrient Yields
4.2. Cost–Benefit Analysis
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibbs, P.A.; Parkinson, R.J.; Misselbrook, T.H.; Burchett, S. Response of grass following the application of composted and untreated cattle manure. In Proceedings of the Accounting for Nutrients—A Challenge for Grassland Farmers in the 21st Century; Occasional Symposium No. 33; British Grassland Society: Warwickshire, UK, 1999; pp. 115–120. [Google Scholar]
- Larney, F.J.; Buckley, K.E.; Hao, X.; McCaughey, W.P. Fresh, Stockpiled, and Composted Beef Cattle Feedlot Manure. J. Environ. Qual. 2006, 35, 1844–1854. [Google Scholar] [CrossRef]
- McRoberts, K.C.; Ketterings, Q.M.; Parsons, D.; Hai, T.T.; Quan, N.H.; Ba, N.X.; Nicholson, C.F.; Cherney, D.J.R. Impact of Forage Fertilization with Urea and Composted Cattle Manure on Soil Fertility in Sandy Soils of South-Central Vietnam. Int. J. Agron. 2016, 2016, 4709024. [Google Scholar] [CrossRef]
- Thao, L.V. Conference on the Developing Effective and Sustainable Beef Cattle and Meat Goat Production. In Proceedings of the ILDEX VIETNAM 2024, Ho Chi Minh City, Vietnam, 31 May 2024. [Google Scholar]
- Cuong, V.C.; Van, V.K.; Phung, L.D.; Thong, H.T.; Tien, T.M.; Thang, C.M.; Son, D.T.T.; Tien, D.V. Livestock Environment—Effective and Sustainable Management and Utilization of Livestock Waste; Science and Technology Publishing House: Shanghai, China, 2013; 239p. [Google Scholar]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Röös, E.; Patel, M.; Spångberg, J.; Carlsson, G.; Rydhmer, L. Limiting livestock production to pasture and by-products in a search for sustainable diets. Food Policy 2016, 58, 1–13. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; Carvalho, P.C.d.F.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Voisin, R.; Horwitz, P.; Godrich, S.; Sambell, R.; Cullerton, K.; Devine, A. What goes in and what comes out: A scoping review of regenerative agricultural practices. Agroecol. Sustain. Food Syst. 2024, 48, 124–158. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, H.; Wang, N.; Guo, L.; Meng, J.; Ding, N.; Wu, G.; Jiang, G. Effects of Manure Compost Application on Soil Microbial Community Diversity and Soil Microenvironments in a Temperate Cropland in China. PLoS ONE 2014, 9, e108555. [Google Scholar] [CrossRef]
- Brummerloh, A.; Kuka, K. The Effects of Manure Application and Herbivore Excreta on Plant and Soil Properties of Temperate Grasslands—A Review. Agronomy 2023, 13, 3010. [Google Scholar] [CrossRef]
- iNaturalist. Brachiaria Mutica. Available online: https://www.inaturalist.org/taxa/292125-Brachiaria-mutica (accessed on 27 August 2025).
- Keo, S.; Khen, K.; Holtenius, K.; Pauly, T. Para grass (Brachiaria mutica), ensiled or supplemented with sugar palm syrup, improves growth and feed conversion in “Yellow” cattle fed rice straw. Livest. Res. Rural Dev. 2013, 25, 133. [Google Scholar]
- Heuzé, V.; Thiollet, H.; Tran, G.; Sauvant, D.; Lebas, F. Para Grass (Brachiaria mutica). Available online: https://www.feedipedia.org/node/486 (accessed on 10 October 2025).
- Manh, L.H.; Dung, N.N.X.; Ngoi, T.P. Effects of planting spacing on the growth characteristics and productivity of Hymenachne acutigluma and Para grass (Brachiaria mutica) cultivated in Can Tho City. CTU J. Sci. 2007, 7, 49–57. [Google Scholar]
- Binh, L.H. Forage productivity of Para grass in Vietnam. In Integrated Crop-Livestock Production System and Fodder Trees; National Institute of Animal Husbandry: Ha-Noi, VietNam, 1998. [Google Scholar]
- Wekgari, Y.; Gamachu, N.; Dereba, F. Adaptation Trial of Brachiaria Grass Varieties in West and Kellem Wollega Zones of Oromia, Ethiopia. J. Plant Sci. Curr. Res. 2023, 7, 26. [Google Scholar] [CrossRef]
- Dong, N.T.K.; Thu, N.V. Effect of Spophocarpus scandén replacing Brachiaria mutica on nutrient utilization, digestibility, and growth performance of crossbred rabbits in the Mekong delta of Vietnam. J. Anim. Sci. Technol. 2022, 132, 47–52. [Google Scholar]
- Trang, N.T.Q.; Hoa, P.T.B.; Nhung, N.T.T. Study on the effects of supplementing several types of organic fertilizers on sandy soil on growth, development, and fruit yield of tomato (Solanum lycopersicum L.). J. Nat. Sci. Technol. 2017, 14, 139–148. (In Vietnamese) [Google Scholar]
- Quang, P.Q.; Trach, N.X. Feeds and Feeding Dairy Cows; Agricultural Publishing House: Ha Noi City, Vietnam, 2003. (In Vietnamese) [Google Scholar]
- Kien, T.T. Research on Productivity, Quality, and Efficiency of Some Introduced Grass Species in Beef Cattle Production. Doctoral Dissertation, Thai Nguyen University, Thai Nguyen, Vietnam, 2011. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990; p. 28. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1991. [Google Scholar]
- Minitab. Minitab Reference Manual Release 16.2.0; Minitab Inc.: State College, PA, USA, 2010. [Google Scholar]
- Can, T.M. Effect of Harvesting Time on Growth, Yield, and Chemical Composition of Para Grass (Brachiaria mutica) Planted in Vinh Long Province, Vietnam. Undergraduate Thesis, College of Agriculture, Can Tho University, Can Tho, VietNam, 2021. (In Vietnamese). [Google Scholar]
- Lissu, C.; Manyanda, B.; Lulandala, L.L. Effects of Organic Fertilization on Growth Response of Brachiaria (Mulato II) in Lushoto, Tanzania. East Afr. J. Agric. Biotechnol. 2023, 6, 474–483. [Google Scholar] [CrossRef]
- Luc, T.T. Effect of Goat Manure Levels on Biomass Yield, Quality and Intake of Setaria Sphacelata of Cattle. Master’s Thesis, Department of Animal Science, College of Agriculture, Can Tho University, Can Tho, Vietnam, 2022; pp. 25–27. (In Vietnamese). [Google Scholar]
- Olsen, F. Effects of nitrogen fertilizer on yield and protein content of Brachiaria mutica (Forsk.) Stapf, Cynodon dactylon (L.) Pers., and Setaria splendida Stapf in Uganda. Trop. Agric. 1974, 51, 523–529. [Google Scholar]
- Hong, N.T.T.; Trang, N.T.N.; Hieu, L.T.M. Effects of a supplement of yeast-fermented broken rice on nitrogen retention and methane emissions in growing goats fed Para grass (Brachiaria mutica). Livest. Res. Rural Dev. 2023, 35, 47. [Google Scholar]
- Thanh, V.D.; Thu, N.V.; Preston, T.R. Effect of potassium nitrate or urea as NPN source and levels of Mangosteen peel on in vitro gas and methane production using molasses, Operculina turpethum and Brachiaria mutica as substrate. Livest. Res. Rural Dev. 2012, 24, 63. [Google Scholar]
- Butler, T.J.; Muir, J.P. Dairy Manure Compost Improves Soil and Increases Tall Wheatgrass Yield. Agron. J. 2006, 98, 1090–1096. [Google Scholar] [CrossRef]
- Newton, G.L.; Bernard, J.K.; Hubbard, R.K.; Allison, J.R.; Lowrance, R.R.; Gascho, G.J.; Gates, R.N.; Vellidis, G. Managing Manure Nutrients Through Multi-crop Forage Production. J. Dairy Sci. 2003, 86, 2243–2252. [Google Scholar] [CrossRef]
- Das, S.; Jeong, S.T.; Das, S.; Kim, P.J. Composted Cattle Manure Increases Microbial Activity and Soil Fertility More Than Composted Swine Manure in a Submerged Rice Paddy. Front. Microbiol. 2017, 8, 1702. [Google Scholar] [CrossRef]
- Mui, N.T. Country Pasture/Forage Resource Profiles. Vietnam; FAO: Rome, Italy, 2006; Available online: https://ees.kuleuven.be/eng/klimos/toolkit/documents/661_Vietnam.pdf (accessed on 9 August 2025).
- Tarekegn, A.; Amsalu, D.; Gashaw, E.; Adane, K. Forage yield and quality traits of Brachiaria spp. grass species at central Gondar Zone, Ethiopia. J. Rangel. Sci. 2023, 13, 132329. [Google Scholar] [CrossRef]
- Luc, T.T.; Thu, N.V. Effect of goat manure on the growth, yield, and quality of Setaria grass (Setaria sphacelata) in Can Tho City. J. Livest. Sci. Technol. 2021, 125, 67–78. [Google Scholar]
- Khang, L.Q. Effects of Organic and Chemical Fertilizers on the Growth, Yield, and Production Costs of Elephant Grass. Undergraduate Thesis, Department of Animal Science, College of Agriculture, Can Tho University, Can Tho, Vietnam, 2024. [Google Scholar]
- Viet, V.H.; Han, P.T.; Tung, N.C.T.; Dong, N.M.; Trang, N.T.D. Assessment of increasing salt tolerance of Para grass (Brachiaria mutica), Paspalum (Paspalum atratum), and Setaria (Setaria sphacelata) in experimental conditions. CTU J. Sci. 2019, 55, 124–134. [Google Scholar] [CrossRef]




| Item | Value |
|---|---|
| pH (H2O) | 5.19 |
| Organic matter (OM), % | 4.03 |
| NH4+-N, mg/kg | 6.29 |
| NO3−-N, mg/kg | 0.172 |
| Available P, mg/kg | 10.5 |
| Exchangeable K, mg/kg | 0.292 |
| Exchangeable Ca, mg/kg | 6.76 |
| Exchangeable Mg, mg/kg | 5.15 |
| Cation Exchange Capacity (CEC), cmol(+) /kg | 17.6 |
| Litter | Day | Treatments | ±SE | p | ||||
|---|---|---|---|---|---|---|---|---|
| TDM0 | TDM2.5 | TDM5.0 | TDM7.5 | TDM10 | ||||
| 1 | 7 | 3.60 | 3.70 | 3.40 | 3.40 | 3.60 | 0.141 | 0.478 |
| 14 | 5.00 | 4.80 | 5.40 | 5.50 | 4.90 | 0.248 | 0.230 | |
| 21 | 7.60 | 7.30 | 8.50 | 8.50 | 7.10 | 0.566 | 0.296 | |
| 28 | 12.9 | 12.5 | 12.2 | 13.2 | 10.6 | 0.361 | 0.312 | |
| 35 | 14.4 | 13.3 | 13.1 | 14.1 | 13.4 | 0.459 | 0.304 | |
| 42 | 19.8 | 18.0 | 18.1 | 18.1 | 19.2 | 0.635 | 0.363 | |
| 49 | 22.6 | 22.0 | 23.3 | 23.3 | 20.8 | 0.651 | 0.097 | |
| 56 | 27.0 | 28.0 | 29.2 | 30.0 | 25.2 | 1.15 | 0.098 | |
| 63 | 28.5 | 30.3 | 32.2 | 32.5 | 28.1 | 1.47 | 0.186 | |
| 2 | 7 | 28.5 | 33.8 | 31.1 | 30.8 | 29.2 | 1.27 | 0.096 |
| 14 | 37.6 | 38.7 | 36.6 | 36.0 | 38.1 | 1.48 | 0.690 | |
| 21 | 43.5 | 43.6 | 42.1 | 41.6 | 43.4 | 0.926 | 0.458 | |
| 28 | 47.3 | 45.6 | 44.0 | 43.5 | 44.9 | 1.04 | 0.165 | |
| 35 | 48.7 | 46.5 | 46.6 | 47.0 | 48.5 | 1.15 | 0.511 | |
| 3 | 7 | 30.6 | 31 | 35.4 | 33.1 | 33.2 | 1.27 | 0.129 |
| 14 | 39.6 | 40.1 | 40.8 | 38.7 | 38.1 | 1.40 | 0.677 | |
| 21 | 45.4 | 44.8 | 45.7 | 43.7 | 43.4 | 1.01 | 0.459 | |
| 28 | 49.5 | 47.1 | 47.5 | 45.9 | 45.7 | 1.05 | 0.157 | |
| 35 | 50.9 | 50.4 | 48.8 | 48.7 | 48.7 | 1.26 | 0.605 | |
| Litter | Day | Treatments | ±SE | p | ||||
|---|---|---|---|---|---|---|---|---|
| TDM0 | TDM2.5 | TDM5.0 | TDM7.5 | TDM10 | ||||
| 1 | 7 | 21.3 | 21.9 | 21.1 | 21.0 | 21.4 | 0.795 | 0.924 |
| 14 | 31.9 | 32.6 | 32.9 | 32.0 | 31.1 | 0.984 | 0.720 | |
| 21 | 38.0 | 39.2 | 39.3 | 39.4 | 39.5 | 0.667 | 0.562 | |
| 28 | 45.6 b | 46.1 b | 45.6 b | 47.8 ab | 51.9 a | 1.08 | 0.009 | |
| 35 | 56.8 d | 58.7 c | 60.6 b | 62.7 a | 63.7 a | 0.377 | 0.001 | |
| 42 | 80.1 c | 92.4 b | 94.3 ab | 94.1 ab | 96.0 a | 0.513 | 0.001 | |
| 49 | 96.3 c | 109 b | 112 ab | 116 ab | 117 a | 1.573 | 0.001 | |
| 56 | 112 c | 122 b | 127 a | 129 a | 128 a | 0.80 | 0.001 | |
| 63 | 124 c | 133 b | 136 b | 139 a | 139 a | 0.647 | 0.001 | |
| 2 | 7 | 31.0 | 32.6 | 33.0 | 33.1 | 33.7 | 0.582 | 0.072 |
| 14 | 47.3 bc | 47.0 c | 49.4 bc | 49.7 ab | 53.4 a | 0.590 | 0.001 | |
| 21 | 65.3 d | 68.5 c | 72.3 b | 74.5 ab | 76.0 a | 0.50 | 0.001 | |
| 28 | 81.0 d | 85.0 c | 87.6 b | 89.2 b | 91.8 a | 0.533 | 0.001 | |
| 35 | 94.6 d | 102 c | 104 bc | 106 ab | 108 a | 0.619 | 0.001 | |
| 3 | 7 | 33.5 b | 34.5 ab | 35.5 ab | 35.5 a | 36.0 a | 0.50 | 0.038 |
| 14 | 52 b | 51.6 b | 54.1 b | 54.1 b | 57.9 a | 0.733 | 0.001 | |
| 21 | 69.5 d | 72.8 c | 76.2 b | 79 a | 80.2 a | 0.473 | 0.001 | |
| 28 | 85.6 d | 89.3 c | 92 b | 94.1 ab | 95.8 a | 0.485 | 0.001 | |
| 35 | 90.9 d | 106 c | 108 bc | 111 ab | 113 a | 0.634 | 0.001 | |
| Harvest | Item | Treatments | ±SE | p | ||||
|---|---|---|---|---|---|---|---|---|
| TDM0 | TDM2.5 | TDM5.0 | TDM7.5 | TDM10 | ||||
| 1 | DM | 18.5 | 17.5 | 18.2 | 17.7 | 17.7 | 0.299 | 0.171 |
| OM | 91.1 | 91.2 | 90.8 | 90.7 | 90.7 | 0.351 | 0.741 | |
| CP | 6.80 | 7.10 | 7.50 | 7.40 | 8.00 | 0.437 | 0.412 | |
| NDF | 64.6 | 65.8 | 64.3 | 64.4 | 61.6 | 1.96 | 0.652 | |
| EE | 1.94 | 3.10 | 2.65 | 2.42 | 2.24 | 0.455 | 0.518 | |
| Ash | 8.93 | 8.77 | 9.17 | 9.31 | 9.33 | 0.351 | 0.741 | |
| 2 | DM | 21.8 | 20.6 | 20.7 | 20.9 | 21.1 | 1.12 | 0.945 |
| OM | 92.7 | 88.7 | 92.7 | 88.4 | 90.9 | 2.16 | 0.480 | |
| CP | 7.60 | 6.52 | 7.52 | 7.59 | 7.36 | 0.375 | 0.279 | |
| NDF | 61.9 | 61.6 | 59.7 | 60.0 | 59.8 | 1.29 | 0.625 | |
| EE | 2.13 | 1.90 | 2.55 | 2.95 | 2.72 | 0.373 | 0.330 | |
| Ash | 7.30 | 11.3 | 7.27 | 11.6 | 9.10 | 2.16 | 0.480 | |
| 3 | DM | 19.0 | 18.3 | 18.0 | 18.0 | 19.8 | 0.60 | 0.249 |
| OM | 92.7 | 92 | 92.7 | 88.4 | 90 | 1.51 | 0.287 | |
| CP | 7.89 | 7.69 | 8.34 | 8.0 | 8.18 | 0.205 | 0.272 | |
| NDF | 64.8 | 62.6 | 65.3 | 60.9 | 60.2 | 1.56 | 0.154 | |
| EE | 2.8 | 2.46 | 3.25 | 2.84 | 2.36 | 0.437 | 0.291 | |
| Ash | 7.29 | 7.97 | 7.25 | 11.6 | 9.09 | 1.51 | 0.287 | |
| Average | DM | 19.8 | 18.8 | 19.0 | 18.9 | 19.5 | 0.384 | 0.349 |
| OM | 92.2 | 90.6 | 92.1 | 89.2 | 90.5 | 1.10 | 0.348 | |
| CP | 7.43 | 7.10 | 7.79 | 7.66 | 7.85 | 0.227 | 0.215 | |
| NDF | 63.8 | 63.3 | 63.1 | 61.8 | 60.5 | 1.0 | 0.208 | |
| EE | 2.29 | 2.49 | 2.82 | 2.74 | 2.44 | 0.236 | 0.611 | |
| Ash | 7.84 | 9.35 | 7.90 | 10.8 | 9.17 | 1.10 | 0.348 | |
| Harvest | Item | Treatment | ± SE | p | ||||
|---|---|---|---|---|---|---|---|---|
| TDM0 | TDM2.5 | TDM5.0 | TDM7.5 | TDM10 | ||||
| 1 | FBM | 13.4 d | 15.3 cd | 17.5 bc | 18.8 b | 22 a | 0.502 | 0.001 |
| DM | 2.47 d | 2.68 cd | 3.2 bc | 3.34 ab | 3.9 a | 0.133 | 0.001 | |
| CP | 0.167 b | 0.192 b | 0.239 ab | 0.25 ab | 0.31 a | 0.021 | 0.005 | |
| NDF | 1.6 c | 1.76 bc | 2.06 ab | 2.15 ab | 2.4 a | 0.094 | 0.001 | |
| 2 | FBM | 15.8 d | 17.6 cd | 19.4 bc | 21 ab | 23.6 a | 0.602 | 0.001 |
| DM | 3.44 b | 3.62 b | 4.0 b | 4.36 ab | 5.0 a | 0.208 | 0.003 | |
| CP | 0.262 ab | 0.238 b | 0.302 ab | 0.331 ab | 0.369 a | 0.027 | 0.037 | |
| NDF | 2.13 b | 2.24 b | 2.39 ab | 2.61 ab | 2.98 a | 0.139 | 0.011 | |
| 3 | FBM | 15.9 d | 18.0 cd | 19.6 bc | 21.2 b | 24.0 a | 0.548 | 0.001 |
| DM | 3.06 c | 3.28 bc | 3.53 bc | 3.83 b | 4.74 a | 0.152 | 0.001 | |
| CP | 0.24 c | 0.253 bc | 0.294 bc | 0.306 b | 0.387 a | 0.139 | 0.001 | |
| NDF | 1.97 b | 2.05 b | 2.3 b | 2.33 b | 2.85 a | 0.108 | 0.001 | |
| Average | FBM | 15.0 d | 16.7 cd | 18.5 bc | 19.9 ab | 22.6 a | 0.647 | 0.001 |
| DM | 2.98 c | 3.16 c | 3.52 bc | 3.77 b | 4.43 a | 0.126 | 0.001 | |
| CP | 0.223 b | 0.225 b | 0.275 b | 0.291 ab | 0.347 a | 0.015 | 0.001 | |
| NDF | 1.90 c | 1.99 bc | 2.22 bc | 2.32 ab | 2.68 a | 0.089 | 0.001 | |
| Cost Item | Treatment | ||||
|---|---|---|---|---|---|
| TDM0 | TDM2.5 | TDM5.0 | TDM7.5 | TDM10 | |
| Production cost, USD/ha | |||||
| Stem cuttings for planting | 102.7 | 102.7 | 102.7 | 102.7 | 102.7 |
| Top dressing manure | 0 | 7.83 | 15.65 | 23.48 | 31.35 |
| Basal manure | 54.3 | 54.3 | 54.3 | 54.3 | 54.3 |
| Fuel and Pesticides | 95.0 | 95.0 | 95.0 | 95.0 | 95.0 |
| Land rent | 80.4 | 80.4 | 80.4 | 80.4 | 80.4 |
| Labor | 188.4 | 188.4 | 188.4 | 188.4 | 188.4 |
| Total cost | 521 | 529 | 537 | 544 | 552 |
| Production cost per ton | |||||
| Fresh yield, ton/ha | 15.0 | 16.7 | 18.5 | 19.9 | 22.6 |
| Production cost, USD/ton | 34.7 | 31.7 | 29.0 | 27.4 | 24.4 |
| % of TDM0 cost | 100 | 91.4 | 83.6 | 79.0 | 70.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanh, L.T.P.; Thu, N.V.; Liaw, S.-Y.; Hien, N.T. Sustainable Yield and Economic Efficiency of Para Grass (Brachiaria mutica) Using Composted Cow Manure. Sustainability 2025, 17, 9649. https://doi.org/10.3390/su17219649
Thanh LTP, Thu NV, Liaw S-Y, Hien NT. Sustainable Yield and Economic Efficiency of Para Grass (Brachiaria mutica) Using Composted Cow Manure. Sustainability. 2025; 17(21):9649. https://doi.org/10.3390/su17219649
Chicago/Turabian StyleThanh, Le Thi Phuong, Nguyen Van Thu, Shu-Yi Liaw, and Nguyen The Hien. 2025. "Sustainable Yield and Economic Efficiency of Para Grass (Brachiaria mutica) Using Composted Cow Manure" Sustainability 17, no. 21: 9649. https://doi.org/10.3390/su17219649
APA StyleThanh, L. T. P., Thu, N. V., Liaw, S.-Y., & Hien, N. T. (2025). Sustainable Yield and Economic Efficiency of Para Grass (Brachiaria mutica) Using Composted Cow Manure. Sustainability, 17(21), 9649. https://doi.org/10.3390/su17219649

