High-Resolution Flood Risk Assessment in Small Streams Using DSM–DEM Integration and Airborne LiDAR Data
Abstract
1. Introduction
- (1)
- Construct a hybrid elevation model that combines the strengths of DSM and DEM for stream and floodplain representation;
- (2)
- Incorporate hyperspectral indices to refine surface roughness and infiltration parameters;
- (3)
- Apply the integrated dataset to simulate flood scenarios under multiple return periods, demonstrating its applicability for high-resolution flood risk assessment.
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Preprocessing of DSM, DEM, and Hyperspectral Data
2.3. DSM–DEM Integration for Hydraulic Modeling
2.4. MATLAB-Based Hydrological and Flood Simulation Workflow
2.5. Flood Scenario Design and Validation Approach
3. Results
3.1. Comparison of DSM and DEM Cross-Sections
3.2. Flood Inundation Maps Under Different Return Periods
3.3. Influence of Artificial Structures on Flood Extent
4. Discussion
4.1. Model Performance: DSM–DEM Integration for Small-Stream Flood Modeling
4.2. Infrastructure Implications and Policy Relevance for Sustainable Flood Management
4.3. Limitations and Future Directions
4.3.1. Data Availability and Cost
4.3.2. Computational Demand
4.3.3. Implementation Constraints
4.3.4. Scalability and Sustainability Relevance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| IDF | Intensity–Duration–Frequency |
| CSI | Critical Success Index |
| AMSL | Above Mean Sea Level |
| DEM | Digital Elevation Model |
| DSM | Digital Surface Model |
| LiDAR | Light Detection and Ranging |
| NDVI | Normalized Difference Vegetation Index |
| NDWI | Normalized Difference Water Index |
| RMSE | Root Mean Square Error |
| IoU | Intersection over Union |
| AHP | Analytic Hierarchy Process |
| SDB | Satellite-Derived Bathymetry |
| GCF | Global Context Fusion |
Appendix A. Detailed Cross-Sectional Analysis





Appendix B. Flood Inundation Maps

References
- Cheong, T.S.; Kim, S.; Koo, K.M. Development of Measured Hydrodynamic Information-Based Flood Early Warning System for Small Streams. Water Res. 2024, 263, 122159. [Google Scholar] [CrossRef]
- Starzec, M.; Kordana-Obuch, S. Evaluating the Utility of Selected Machine Learning Models for Predicting Stormwater Levels in Small Streams. Sustainability 2024, 16, 783. [Google Scholar] [CrossRef]
- Solín, Ľ.; Sládeková Madajová, M.; Michaleje, L. Mapping the Flood Hazard Potential of Small Watercourses in a Mountain River Basin. Nat. Hazards 2024, 120, 3827–3845. [Google Scholar] [CrossRef]
- Szopos, N.M.; Holb, I.J.; Dávid, A.; Szabó, S. Flood Risk Assessment of a Small River with Limited Available Data. Spat. Inf. Res. 2024, 32, 787–800. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Li, C.; Jin, L.; Sun, X.; Liu, X.; Wang, T. Analysis of Small and Medium–Scale River Flood Risk in Case of Exceeding Control Standard Floods Using Hydraulic Model. Water 2021, 14, 57. [Google Scholar] [CrossRef]
- Goumas, C.; Trichakis, I.; Vozinaki, A.-I.; Karatzas, G.P. Flood Risk Assessment and Flow Modeling of the Stalos Stream Area. J. Hydroinformatics 2022, 24, 677–696. [Google Scholar] [CrossRef]
- Nandam, V.; Patel, P.L. A Framework to Assess Suitability of Global Digital Elevation Models for Hydrodynamic Modelling in Data Scarce Regions. J. Hydrol. 2024, 630, 130654. [Google Scholar] [CrossRef]
- Liu, Y.; Bates, P.D.; Neal, J.C.; Yamazaki, D. Bare-Earth DEM Generation in Urban Areas for Flood Inundation Simulation Using Global Digital Elevation Models. Water Resour. Res. 2021, 57, e2020WR028516. [Google Scholar] [CrossRef]
- Muthusamy, M.; Casado, M.R.; Butler, D.; Leinster, P. Understanding the Effects of Digital Elevation Model Resolution in Urban Fluvial Flood Modelling. J. Hydrol. 2021, 596, 126088. [Google Scholar] [CrossRef]
- Jarocińska, A.; Niedzielko, J.; Kopeć, D.; Wylazłowska, J.; Omelianska, B.; Charyton, J. Testing Textural Information Base on LiDAR and Hyperspectral Data for Mapping Wetland Vegetation: A Case Study of Warta River Mouth National Park (Poland). Remote Sens. 2023, 15, 3055. [Google Scholar] [CrossRef]
- Lee, S.-J.; Kim, H.-S.; Yun, H.-S.; Lee, S.-H. Satellite-Derived Bathymetry Using Sentinel-2 and Airborne Hyperspectral Data: A Deep Learning Approach with Adaptive Interpolation. Remote Sens. 2025, 17, 2594. [Google Scholar] [CrossRef]
- Malinverni, E.S.; Di Stefano, F.; Chiappini, S.; Darvini, G.; Fronzi, D.; Pierdicca, R.; Tazioli, A. LiDAR-Driven Topographic Surveys for Floodplain Management. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2025, XLVIII-G, 1035–1042. [Google Scholar] [CrossRef]
- Prošek, J.; Gdulová, K.; Barták, V.; Vojar, J.; Solský, M.; Rocchini, D.; Moudrý, V. Integration of Hyperspectral and LiDAR Data for Mapping Small Water Bodies. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102181. [Google Scholar] [CrossRef]
- Hang, R.; Li, Z.; Ghamisi, P.; Hong, D.; Xia, G.; Liu, Q. Classification of Hyperspectral and LiDAR Data Using Coupled CNNs. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4939–4950. [Google Scholar] [CrossRef]
- Hasan Tanim, A.; Warren McKinnie, F.; Goharian, E. Coastal Compound Flood Simulation through Coupled Multidimensional Modeling Framework. J. Hydrol. 2024, 630, 130691. [Google Scholar] [CrossRef]
- Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S. Integration of 2-D Hydraulic Model and High-Resolution Lidar-Derived DEM for Floodplain Flow Modeling. Hydrol. Earth Syst. Sci. 2015, 19, 3605–3616. [Google Scholar] [CrossRef]
- González-Moreno, M.T.; Rodrigo-Comino, J. Geostatistical Vegetation Filtering for Rapid UAV-RGB Mapping of Sudden Geomorphological Events in the Mediterranean Areas. Drones 2025, 9, 441. [Google Scholar] [CrossRef]
- Blundell, S. Tutorial: The DEM Breakline and Differencing Analysis Tool—Step-by-Step Workflows and Procedures for Effective Gridded DEM Analysis; Engineer Research and Development Center (U.S.): Vicksburg, MS, USA, 2022.
- Demir, V.; Keskin, A.Ü. Obtaining the Manning Roughness with Terrestrial Remote Sensing Technique and Flood Modeling Using FLO-2D: A Case Study Samsun from Turkey. Geofizika 2020, 37, 131–156. [Google Scholar] [CrossRef]
- Mtamba, J.; Van Der Velde, R.; Ndomba, P.; Zoltán, V.; Mtalo, F. Use of Radarsat-2 and Landsat TM Images for Spatial Parameterization of Manning’s Roughness Coefficient in Hydraulic Modeling. Remote Sens. 2015, 7, 836–864. [Google Scholar] [CrossRef]
- Afzal, M.A.; Ali, S.; Nazeer, A.; Khan, M.I.; Waqas, M.M.; Aslam, R.A.; Cheema, M.J.M.; Nadeem, M.; Saddique, N.; Muzammil, M.; et al. Flood Inundation Modeling by Integrating HEC–RAS and Satellite Imagery: A Case Study of the Indus River Basin. Water 2022, 14, 2984. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for Small-Scale Flood Hazard Mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Meadows, M.; Jones, S.; Reinke, K. Vertical Accuracy Assessment of Freely Available Global DEMs (FABDEM, Copernicus DEM, NASADEM, AW3D30 and SRTM) in Flood-Prone Environments. Int. J. Digit. Earth 2024, 17, 2308734. [Google Scholar] [CrossRef]
- Fereshtehpour, M.; Esmaeilzadeh, M.; Alipour, R.S.; Burian, S.J. Impacts of DEM Type and Resolution on Deep Learning-Based Flood Inundation Mapping. Earth Sci. Inform. 2024, 17, 1125–1145. [Google Scholar] [CrossRef]
- Van De Sande, B.; Lansen, J.; Hoyng, C. Sensitivity of Coastal Flood Risk Assessments to Digital Elevation Models. Water 2012, 4, 568–579. [Google Scholar] [CrossRef]
- McClean, F.; Dawson, R.; Kilsby, C. Implications of Using Global Digital Elevation Models for Flood Risk Analysis in Cities. Water Resour. Res. 2020, 56, e2020WR028241. [Google Scholar] [CrossRef]
- Trepekli, K.; Balstrøm, T.; Friborg, T.; Fog, B.; Allotey, A.N.; Kofie, R.Y.; Møller-Jensen, L. UAV-Borne, LiDAR-Based Elevation Modelling: A Method for Improving Local-Scale Urban Flood Risk Assessment. Nat. Hazards 2022, 113, 423–451. [Google Scholar] [CrossRef]
- Hawker, L.; Neal, J.; Bates, P. Accuracy Assessment of the TanDEM-X 90 Digital Elevation Model for Selected Floodplain Sites. Remote Sens. Environ. 2019, 232, 111319. [Google Scholar] [CrossRef]
- Crévolin, V.; Hassanzadeh, E.; Bourdeau-Goulet, S.-C. Updating the Intensity-Duration-Frequency Curves in Major Canadian Cities under Changing Climate Using CMIP5 and CMIP6 Model Projections. Sustain. Cities Soc. 2023, 92, 104473. [Google Scholar] [CrossRef]
- Schlef, K.E.; Kunkel, K.E.; Brown, C.; Demissie, Y.; Lettenmaier, D.P.; Wagner, A.; Wigmosta, M.S.; Karl, T.R.; Easterling, D.R.; Wang, K.J.; et al. Incorporating Non-Stationarity from Climate Change into Rainfall Frequency and Intensity-Duration-Frequency (IDF) Curves. J. Hydrol. 2023, 616, 128757. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Moradkhani, H.; Slater, L.; Liu, J. A Vine Copula-Based Ensemble Projection of Precipitation Intensity–Duration–Frequency Curves at Sub-Daily to Multi-Day Time Scales. Water Resour. Res. 2022, 58, e2022WR032658. [Google Scholar] [CrossRef]
- Creaco, E. Scaling Models of Intensity–Duration–Frequency (IDF) Curves Based on Adjusted Design Event Durations. J. Hydrol. 2024, 632, 130847. [Google Scholar] [CrossRef]
- Yan, H.; Sun, N.; Wigmosta, M.; Leung, L.R.; Hou, Z.; Coleman, A.; Skaggs, R. Evaluating Next-generation Intensity–Duration–Frequency Curves for Design Flood Estimates in the Snow-dominated Western United States. Hydrol. Process. 2020, 34, 1255–1268. [Google Scholar] [CrossRef]
- Doost, Z.H.; Chowdhury, S.; Al-Areeq, A.M.; Tabash, I.; Hassan, G.; Rahnaward, H.; Qaderi, A.R. Development of Intensity–Duration–Frequency Curves for Herat, Afghanistan: Enhancing Flood Risk Management and Implications for Infrastructure and Safety. Nat. Hazards 2024, 120, 12933–12965. [Google Scholar] [CrossRef]
- Cook, L.M.; McGinnis, S.; Samaras, C. The Effect of Modeling Choices on Updating Intensity-Duration-Frequency Curves and Stormwater Infrastructure Designs for Climate Change. Clim. Change 2020, 159, 289–308. [Google Scholar] [CrossRef]
- Collalti, D.; Spencer, N.; Strobl, E. Flash Flood Detection via Copula-Based Intensity–Duration–Frequency Curves: Evidence from Jamaica. Nat. Hazards Earth Syst. Sci. 2024, 24, 873–890. [Google Scholar] [CrossRef]
- Ghavasieh, A.R.; Norouzi, A. Flood-Level Forecasting Using Intensity–Duration–Frequency Curves. Aust. J. Basic Appl. Sci. 2009, 3, 4384–4391. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20103359496 (accessed on 30 September 2025).
- Vinod, D.; Mahesha, A. Modeling Nonstationary Intensity-Duration-Frequency Curves for Urban Areas of India under Changing Climate. Urban Clim. 2024, 56, 102065. [Google Scholar] [CrossRef]
- Kourat, S.; Touaïbia, B.; Yahiaoui, A. Curve Flow-duration-Frequency. The flood modelling regime of the Wadi Mazafran catchment in the north of Algeria. J. Water Land Dev. 2022, 54, 121–130. [Google Scholar] [CrossRef]
- Xu, H.; Tian, Z.; Sun, L.; Ye, Q.; Ragno, E.; Bricker, J.; Mao, G.; Tan, J.; Wang, J.; Ke, Q.; et al. Compound Flood Impact of Water Level and Rainfall during Tropical Cyclone Periods in a Coastal City: The Case of Shanghai. Nat. Hazards Earth Syst. Sci. 2022, 22, 2347–2358. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of Green-Blue-Grey Infrastructure for Sustainable Urban Flood Risk Management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, J. Assessing the Performance of Gray and Green Strategies for Sustainable Urban Drainage System Development: A Multi-Criteria Decision-Making Analysis. J. Clean. Prod. 2021, 293, 126191. [Google Scholar] [CrossRef]
- El Baida, M.; Chourak, M.; Boushaba, F. Flood Mitigation and Water Resource Preservation: Hydrodynamic and SWMM Simulations of Nature-Based Solutions under Climate Change. Water Resour. Manag. 2025, 39, 1149–1176. [Google Scholar] [CrossRef]
- Li, L.; Uyttenhove, P.; Van Eetvelde, V. Planning Green Infrastructure to Mitigate Urban Surface Water Flooding Risk—A Methodology to Identify Priority Areas Applied in the City of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Haubrock, P.J.; Stubbington, R.; Fohrer, N.; Hollert, H.; Jähnig, S.C.; Merz, B.; Pahl-Wostl, C.; Schüttrumpf, H.; Tetzlaff, D.; Wesche, K.; et al. A Holistic Catchment-Scale Framework to Guide Flood and Drought Mitigation Towards Improved Biodiversity Conservation and Human Wellbeing. Wiley Interdiscip. Rev. Water 2025, 12, e70001. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Longobardi, A. Adapting Drainage Networks to the Urban Development: An Assessment of Different Integrated Approach Alternatives for a Sustainable Flood Risk Mitigation in Northern Italy. Sustain. Cities Soc. 2023, 98, 104856. [Google Scholar] [CrossRef]
- International Association of Oil & Gas Producers (IOGP). EPSG Geodetic Parameter Dataset. Available online: https://epsg.org (accessed on 27 September 2025).








| Risk Level | Area_km2 | Percentage |
|---|---|---|
| Low (0–0.5m) | 0.06 | 6.30 |
| Moderate (0.5–1.0m) | 0.06 | 6.59 |
| High (1.0–2.0m) | 0.18 | 18.77 |
| Extreme (>2.0m) | 0.64 | 68.34 |
| Comparison | Inundation Area (km2) | RMSE Depth (m) | IoU Extent |
|---|---|---|---|
| DEM vs. Hybrid | 0.98 (DEM) vs. 0.92 (Hybrid) | 0.42 | 0.945 |
| DSM vs. Hybrid | 0.90 (DSM) vs. 0.92 (Hybrid) | 0.31 | 0.965 |
| DEM vs. DSM | 0.98 (DEM) vs. 0.90 (DSM) | 0.52 | 0.912 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-J.; Han, Y.-S.; Kim, J.-S.; Yun, H.-S. High-Resolution Flood Risk Assessment in Small Streams Using DSM–DEM Integration and Airborne LiDAR Data. Sustainability 2025, 17, 9616. https://doi.org/10.3390/su17219616
Lee S-J, Han Y-S, Kim J-S, Yun H-S. High-Resolution Flood Risk Assessment in Small Streams Using DSM–DEM Integration and Airborne LiDAR Data. Sustainability. 2025; 17(21):9616. https://doi.org/10.3390/su17219616
Chicago/Turabian StyleLee, Seung-Jun, Yong-Sik Han, Ji-Sung Kim, and Hong-Sik Yun. 2025. "High-Resolution Flood Risk Assessment in Small Streams Using DSM–DEM Integration and Airborne LiDAR Data" Sustainability 17, no. 21: 9616. https://doi.org/10.3390/su17219616
APA StyleLee, S.-J., Han, Y.-S., Kim, J.-S., & Yun, H.-S. (2025). High-Resolution Flood Risk Assessment in Small Streams Using DSM–DEM Integration and Airborne LiDAR Data. Sustainability, 17(21), 9616. https://doi.org/10.3390/su17219616

