Evidence of Agroecological Performance in Production Systems Integrating Agroecology and Bioeconomy Actions Using TAPE in the Colombian Andean–Amazon Transition Zone
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Data Processing Strategy
2.2.1. Step 0. Description of the Context of Socio-Productive Systems
2.2.2. Step 1. Characterization of the Degree of Agroecological Transition
2.2.3. Step 2. Determination of Core Performance Indicators
2.3. Data Analysis
3. Results
3.1. Description of the Context of the Socio-Productive Systems
3.2. Characterization of the Agroecological Transition
3.3. Core Performance Indicators
3.3.1. Economic Sustainability
3.3.2. Environmental Sustainability
3.3.3. Social Sustainability
3.4. Relationships Between Agroecological Transition and Key Performance Indicators
4. Discussion
4.1. Progress and Limitations in the Agroecological Transition
4.2. Contribution of Agroecology to Economic Performance
4.3. Relationships Between Agroecological Practices, Environment, and Social Performance
4.4. Territorial Implications and Contributions to Sustainability Policies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OCDE. Rural Policy Review of Colombia 2022; OECD Rural Studies; OECD: Paris, France, 2022; ISBN 9789264497856. [Google Scholar]
- Anderson, K.; Valdés, A. Distortions to Agricultural Incentives in Latin America; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2008; ISBN 978-0-8213-7513-6. [Google Scholar]
- Barrios Latorre, S.A.; Sadovska, V.; Chongtham, I.R. Perspectives on Agroecological Transition: The Case of Guachetá Municipality, Colombia. Agroecol. Sustain. Food Syst. 2023, 47, 382–412. [Google Scholar] [CrossRef]
- Altieri, M.A.; Toledo, V.M. The Agroecological Revolution in Latin America: Rescuing Nature, Ensuring Food Sovereignty and Empowering Peasants. J. Peasant. Stud. 2011, 38, 587–612. [Google Scholar] [CrossRef]
- FAO. The 10 Elements of Agroecology. Guiding the Transition to Sustainable Food and Agricultural Systems; FAO: Rome, Italy, 2018. [Google Scholar]
- Gliessman, S.R. Agroecology: The Ecology of Sustainable Food Systems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9780429153709. [Google Scholar]
- Armenteras, D.; Murcia, U.; González, T.M.; Barón, O.J.; Arias, J.E. Scenarios of Land Use and Land Cover Change for NW Amazonia: Impact on Forest Intactness. Glob. Ecol. Conserv. 2019, 17, e00567. [Google Scholar] [CrossRef]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The Drivers and Impacts of Amazon Forest Degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef]
- Ruiz-Agudelo, C.A.; de Paula Gutiérrez-Bonilla, F.; Cortes-Gómez, A.M.; Suarez, A. A First Approximation to the Colombian Amazon Basin Remnant Natural Capital. Policy and Development Implications. Trees For. People 2022, 10, 100334. [Google Scholar] [CrossRef]
- Dávalos, L.M.; Sanchez, K.M.; Armenteras, D. Deforestation and Coca Cultivation Rooted in Twentieth-Century Development Projects. Bioscience 2016, 66, 974–982. [Google Scholar] [CrossRef]
- González-González, A.; Villegas, J.C.; Clerici, N.; Salazar, J.F. Spatial-Temporal Dynamics of Deforestation and Its Drivers Indicate Need for Locally-Adapted Environmental Governance in Colombia. Ecol. Indic. 2021, 126, 107695. [Google Scholar] [CrossRef]
- Lavelle, P.; Dolédec, S.; de Sartre, X.A.; Decaëns, T.; Gond, V.; Grimaldi, M.; Oszwald, J.; Hubert, B.; Ramirez, B.; Veiga, I.; et al. Unsustainable Landscapes of Deforested Amazonia: An Analysis of the Relationships among Landscapes and the Social, Economic and Environmental Profiles of Farms at Different Ages Following Deforestation. Glob. Environ. Change 2016, 40, 137–155. [Google Scholar] [CrossRef]
- Álvarez, F.; Casanoves, F.; Suárez, J.C.; Pezo, D. The Effect of Different Levels of Tree Cover on Milk Production in Dual-Purpose Livestock Systems in the Humid Tropics of the Colombian Amazon Region. Agrofor. Syst. 2021, 95, 93–102. [Google Scholar] [CrossRef]
- Loch, V.D.C.; Celentano, D.; Cardozo, E.G.; Rousseau, G.X. Towards Agroecological Transition in Degraded Soils of the Eastern Amazon. For. Trees Livelihoods 2020, 30, 90–105. [Google Scholar] [CrossRef]
- Sachet, E.; Mertz, O.; Vanegas, M.; Cruz-Garcia, G.S.; Beltran, M.; Angel-Sanchez, Y.K.; Zapata, Y.C.; Lavelle, P.; Solarte, A.; Suarez, J.C.; et al. Codesigning Sustainable Land Uses: Framing Participatory Methods for Research and Development Projects. Agroecol. Sustain. Food Syst. 2023, 47, 413–440. [Google Scholar] [CrossRef]
- Altieri, M.A.; Funes-Monzote, F.R.; Petersen, P. Agroecologically Efficient Agricultural Systems for Smallholder Farmers: Contributions to Food Sovereignty. Agron. Sustain. Dev. 2012, 32, 1–13. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.F.; Ferrer, A.; Peigné, J. Agroecological Practices for Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- Tittonell, P. Ecological Intensification of Agriculture—Sustainable by Nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. [Google Scholar] [CrossRef]
- Bohan, D.A.; Richter, A.; Bane, M.; Therond, O.; Pocock, M.J.O. Farmer-Led Agroecology for Biodiversity with Climate Change. Trends Ecol. Evol. 2022, 37, 927–930. [Google Scholar] [CrossRef]
- Steier, G.; Cianci, A.G. Environmental Resilience and Food Law: Agrobiodiversity and Agroecology, 1st ed.; Steier, G., Cianci, A.G., Eds.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429443350. [Google Scholar]
- Wanger, T.C.; DeClerck, F.; Garibaldi, L.A.; Ghazoul, J.; Kleijn, D.; Klein, A.M.; Kremen, C.; Mooney, H.; Perfecto, I.; Powell, L.L.; et al. Integrating Agroecological Production in a Robust Post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 2020, 4, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Bezner Kerr, R.; Postigo, J.C.; Smith, P.; Cowie, A.; Singh, P.K.; Rivera-Ferre, M.; Tirado-von der Pahlen, M.C.; Campbell, D.; Neufeldt, H. Agroecology as a Transformative Approach to Tackle Climatic, Food, and Ecosystemic Crises. Curr. Opin. Environ. Sustain. 2023, 62, 101275. [Google Scholar] [CrossRef]
- Dittmer, K.M.; Rose, S.; Snapp, S.S.; Kebede, Y.; Brickman, S.; Shelton, S.; Egler, C.; Stier, M.; Wollenberg, E. Agroecology Can Promote Climate Change Adaptation Outcomes Without Compromising Yield in Smallholder Systems. Environ. Manag. 2023, 72, 333–342. [Google Scholar] [CrossRef]
- Hrabanski, M.; Le Coq, J.F. Climatisation of Agricultural Issues in the International Agenda through Three Competing Epistemic Communities: Climate-Smart Agriculture, Agroecology, and Nature-Based Solutions. Environ. Sci. Policy 2022, 127, 311–320. [Google Scholar] [CrossRef]
- Duran-Bautista, E.H.; Angel-Sanchez, Y.K.; Bermúdez, M.F.; Suárez, J.C. Agroforestry Systems Generate Changes in Soil Macrofauna and Soil Physical Quality Relationship in the Northwestern Colombian Amazon. Agrofor. Syst. 2023, 97, 927–938. [Google Scholar] [CrossRef]
- Faye, J.B.; Braun, Y.A. Soil and Human Health: Understanding Agricultural and Socio-Environmental Risk and Resilience in the Age of Climate Change. Health Place 2022, 77, 102799. [Google Scholar] [CrossRef]
- Luján Soto, R.; Cuéllar Padilla, M.; de Vente, J. Participatory Selection of Soil Quality Indicators for Monitoring the Impacts of Regenerative Agriculture on Ecosystem Services. Ecosyst. Serv. 2020, 45, 101157. [Google Scholar] [CrossRef]
- Muchane, M.N.; Sileshi, G.W.; Gripenberg, S.; Jonsson, M.; Pumariño, L.; Barrios, E. Agroforestry Boosts Soil Health in the Humid and Sub-Humid Tropics: A Meta-Analysis. Agric. Ecosyst. Environ. 2020, 295, 106899. [Google Scholar] [CrossRef]
- Landholm, D.M.; Pradhan, P.; Wegmann, P.; Sánchez, M.A.R.; Salazar, J.C.S.; Kropp, J.P. Reducing Deforestation and Improving Livestock Productivity: Greenhouse Gas Mitigation Potential of Silvopastoral Systems in Caquetá. Environ. Res. Lett. 2019, 14, 114007. [Google Scholar] [CrossRef]
- Lucantoni, D.; Sy, M.R.; Goïta, M.; Veyret-Picot, M.; Vicovaro, M.; Bicksler, A.; Mottet, A. Evidence on the Multidimensional Performance of Agroecology in Mali Using TAPE. Agric. Syst. 2023, 204, 103499. [Google Scholar] [CrossRef]
- van der Ploeg, J.D.; Barjolle, D.; Bruil, J.; Brunori, G.; Costa Madureira, L.M.; Dessein, J.; Drąg, Z.; Fink-Kessler, A.; Gasselin, P.; Gonzalez de Molina, M.; et al. The Economic Potential of Agroecology: Empirical Evidence from Europe. J. Rural. Stud. 2019, 71, 46–61. [Google Scholar] [CrossRef]
- Bezner Kerr, R.; Madsen, S.; Stüber, M.; Liebert, J.; Enloe, S.; Borghino, N.; Parros, P.; Mutyambai, D.M.; Prudhon, M.; Wezel, A. Can Agroecology Improve Food Security and Nutrition? A Review. Glob. Food Sec 2021, 29, 100540. [Google Scholar] [CrossRef]
- Deaconu, A.; Berti, P.R.; Cole, D.C.; Mercille, G.; Batal, M. Agroecology and Nutritional Health: A Comparison of Agroecological Farmers and Their Neighbors in the Ecuadorian Highlands. Food Policy 2021, 101, 102034. [Google Scholar] [CrossRef]
- Kansanga, M.M.; Kangmennaang, J.; Bezner Kerr, R.; Lupafya, E.; Dakishoni, L.; Luginaah, I. Agroecology and Household Production Diversity and Dietary Diversity: Evidence from a Five-Year Agroecological Intervention in Rural Malawi. Soc. Sci. Med. 2021, 288, 113550. [Google Scholar] [CrossRef]
- Santoso, M.V.; Bezner Kerr, R.N.; Kassim, N.; Martin, H.; Mtinda, E.; Njau, P.; Mtei, K.; Hoddinott, J.; Young, S.L. A Nutrition-Sensitive Agroecology Intervention in Rural Tanzania Increases Children’s Dietary Diversity and Household Food Security but Does Not Change Child Anthropometry: Results from a Cluster-Randomized Trial. J. Nutr. 2021, 151, 2010–2021. [Google Scholar] [CrossRef]
- van Zutphen, K.G.; van den Berg, S.; Gavin-Smith, B.; Imbo, E.; Kraemer, K.; Monroy-Gomez, J.; Pannatier, M.; Prytherch, H.; Six, J.; Thoennissen, C.; et al. Nutrition as a Driver and Outcome of Agroecology. Nat. Food 2022, 3, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Ewert, F.; Baatz, R.; Finger, R. Agroecology for a Sustainable Agriculture and Food System: From Local Solutions to Large-Scale Adoption. Annu. Rev. Resour. Econ. 2023, 15, 351–381. [Google Scholar] [CrossRef]
- HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Securityn World; High Level Panel of Experts on Food Security and Nutrition (HLPE): Rome, Italy, 2019. [Google Scholar]
- Mottet, A.; Bicksler, A.; Lucantoni, D.; De Rosa, F.; Scherf, B.; Scopel, E.; López-Ridaura, S.; Gemmil-Herren, B.; Bezner Kerr, R.; Sourisseau, J.-M.; et al. Assessing Transitions to Sustainable Agricultural and Food Systems: A Tool for Agroecology Performance Evaluation (TAPE). Front. Sustain. Food Syst. 2020, 4, 252. [Google Scholar] [CrossRef]
- Darmaun, M.; Chevallier, T.; Hossard, L.; Lairez, J.; Scopel, E.; Chotte, J.-L.; Lambert-Derkimba, A.; de Tourdonnet, S. Multidimensional and Multiscale Assessment of Agroecological Transitions. A Review. Int. J. Agric. Sustain. 2023, 21, 2193028. [Google Scholar] [CrossRef]
- Barrios, E.; Gemmill-Herren, B.; Bicksler, A.; Siliprandi, E.; Brathwaite, R.; Moller, S.; Batello, C.; Tittonell, P. The 10 Elements of Agroecology: Enabling Transitions towards Sustainable Agriculture and Food Systems through Visual Narratives. Ecosyst. People 2020, 16, 230–247. [Google Scholar] [CrossRef]
- FAO. TAPE Tool for Agroecology Performance Evaluation 2019—Process of Development and Guidelines for Application. Test Version; FAO: Rome, Italy, 2019; ISBN 978-92-5-132064-8. [Google Scholar]
- James, D.; Blesh, J.; Levers, C.; Ramankutty, N.; Bicksler, A.J.; Mottet, A.; Wittman, H. The State of Agroecology in Brazil: An Indicator-Based Approach to Identifying Municipal “Bright Spots”. Elem. Sci. Anthr. 2023, 11, 11. [Google Scholar] [CrossRef]
- El Mujtar, V.A.; Zamor, R.; Salmerón, F.; del Guerrero, A.S.; Laborda, L.; Tittonell, P.; Hogan, R. Lexical Analysis Improves the Identification of Contextual Drivers and Farm Typologies in the Assessment of Transitions to Agroecology through TAPE—A Case Study from Rural Nicaragua. Agric. Syst. 2023, 209, 103686. [Google Scholar] [CrossRef]
- Bicksler, A.J.; Mottet, A.; Lucantoni, D.; De Rosa, F. Fao’S Tool for Agroecology Performance Evaluation (Tape): A Multi-Dimensional Assessment Tool for the Performance of Agroecology for Better Decision Making in the Transition to Sustainable Food Systems. In Proceedings of the Organic World Congress 2021, Rennes, France, 6–10 September 2021. [Google Scholar]
- Namirembe, S.; Mhango, W.; Njoroge, R.; Tchuwa, F.; Wellard, K.; Coe, R. Grounding a Global Tool—Principles and Practice for Agroecological Assessments Inspired by TAPE. Elem. Sci. Anthr. 2022, 10, 22. [Google Scholar] [CrossRef]
- IGAC. Estudio General de Suelos y Zonificación de Tierras Departamento de Caquetá. Escala 1:100.000; Imprenta Nacional de Colombia: Bogotá, Colombia, 2014; ISBN 978-958-832373-2. [Google Scholar]
- Murad, C.A.; Pearse, J. Landsat Study of Deforestation in the Amazon Region of Colombia: Departments of Caquetá and Putumayo. Remote Sens. Appl. 2018, 11, 161–171. [Google Scholar] [CrossRef]
- Voss, C.; Tsikriktsis, N.; Frohlich, M. Case Research in Operations Management. Int. J. Oper. Prod. Manag. 2002, 22, 195–219. [Google Scholar] [CrossRef]
- SIAT-AC Sistema de Información Ambiental Territorial de la Amazonia Colombiana. Available online: https://siatac.co/ (accessed on 14 April 2025).
- IDEAM. Leyenda Nacional de Coberturas de La Tierra. Metodología CORINE Land Cover Adaptada Para Colombia. Escala 1:100.00; Martínez Ardila, N.J., Murcia García, U.G., Eds.; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2010; ISBN 978-958-806729-2. [Google Scholar]
- Betancurt, B.; Rodriguez, C.H.; Garzón, M.T. Línea Base Para El Monitoreo de La Sostenibilidad de Los Sistemas Productivos Agropecuarios En El Departamento de Caquetá, 1st ed.; Instituto Amazónico de Investigaciones Científicas SINCHI: Bogotá, Colombia, 2015; ISBN 9789588317861. [Google Scholar]
- Bernal Núñez, A.P.; Gutiérrez-Montes, I.; Hernández-Núñez, H.E.; Gutiérrez Suárez, D.R.; Gutiérrez García, G.A.; Suárez, J.C.; Casanoves, F.; Flora, C.; Sibelet, N. Diverse Farmer Livelihoods Increase Resilience to Climate Variability in Southern Colombia. Land Use Policy 2023, 131, 106731. [Google Scholar] [CrossRef]
- Gutiérrez Garcia, G.A.; Gutiérrez-Montes, I.; Suárez Salazar, J.C.; Casanoves, F.; Gutiérrez Suárez, D.R.; Hernández-Núñez, H.E.; Flora, C.B.; Sibelet, N. Contribution of Local Knowledge in Cocoa (Theobroma cacao L.) to the Well-being of Cocoa Families in Colombia: A Response from the Relationship. Agric. Hum. Values 2024, 42, 461–484. [Google Scholar] [CrossRef]
- Tittonell, P.; El Mujtar, V.; Felix, G.; Kebede, Y.; Laborda, L.; Luján Soto, R.; de Vente, J. Regenerative Agriculture—Agroecology without Politics? Front. Sustain. Food Syst. 2022, 6, 844261. [Google Scholar] [CrossRef]
- Lucantoni, D.; Mottet, A.; Bicksler, A.; De Rosa, F.; Scherf, B.; Scopel, É.; López-Ridaura, S.; Gemmil-Herren, B.; Bezner Kerr, R.; Sourisseau, J.M.; et al. Évaluation Des Transitions Vers Des Systèmes Agricoles et Alimentaires Durables: Un Outil Pour l’évaluation Des Performances Agroécologiques (TAPE). Agron. Polit. Agric. Commune Rev. AES 2021, 11, 1–19. [Google Scholar] [CrossRef]
- Levard, L. Guide Pour l’évaluation de l’agroécologie. Méthode Pour Apprécier Ses Effets et Les Conditions de Son Développement; Éditions du Gret/Éditions Quæ: Versailles, France, 2023; ISBN 978-2-7592-3646-6. [Google Scholar]
- Nicholls, C.; Altieri, M.; Dezanet, A.; Lana, M.; Feistauer, D.; Ouriques, M. A Rapid, Farmer–Friendly Agroecological Method to Estimate Soil Quality and Crop Health in Vineyard Systems. Biodynamics 2004, 33–39. [Google Scholar]
- FAO; FHI. 360 Minimum Dietary Diversity for Women: A Guide to Measurement; FAO: Rome, Italy, 2016; ISBN 978-92-5-109153-1. [Google Scholar]
- IFPRI. Instructional Guide on the Abbreviated Women’s Empowerment in Agriculture Index (A-WEAI); Malapit, H., Kovarik, C., Sproule, K., Meinzen-Dick, R., Quisumbing, A., Eds.; International Food Policy Research Institute: Washington, DC, USA, 2015. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R, Version 2025.05.04; Posit Software: Boston, MA, USA, 2025.
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Pebesma, E.; Bivand, R.; Racine, E.; Sumner, M.; Cook, I.; Keitt, T.; Lovelace, R.; Wickham, H.; Ooms, J.; Müller, K.; et al. Sf: Simple Features for R; CRAN: Vienna, Austria, 2025. [Google Scholar]
- de Vries, P.; Piet, G.; Jongbloed, R.; Grundlehner, A.; Tamis, J. Ggsankeyfier: Create Sankey and Alluvial Diagrams Using “Ggplot2”; CRAN: Vienna, Austria, 2024. [Google Scholar]
- Lupton, R.C.; Allwood, J.M. Hybrid Sankey Diagrams: Visual Analysis of Multidimensional Data for Understanding Resource Use. Resour. Conserv. Recycl. 2017, 124, 141–151. [Google Scholar] [CrossRef]
- Schmidt, M. The Sankey Diagram in Energy and Material Flow Management. J. Ind. Ecol. 2008, 12, 173–185. [Google Scholar] [CrossRef]
- Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Casanoves, F.; Di Rienzo, J.A.; Robledo, C.W. InfoStat. Manual Del Usuario; Editorial Brujas: Córdoba, Argentina, 2008. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W.; Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; et al. InfoStat; Grupo InfoStat: Cordoba, Argentina, 2020. Version 2020.
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological Principles and Elements and Their Implications for Transitioning to Sustainable Food Systems. A Review. Agron. Sustain. Dev. 2020, 40, 40. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Pathways for the Amplification of Agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193. [Google Scholar] [CrossRef]
- Pizarro, D.M.; Erickson, M.G.; Gómez-Bravo, C.A.; Picasso, V.D.; Lucantoni, D.; Mottet, A.; Wattiaux, M.A. Agroecological Performance of Smallholder Dairy Cattle Systems in the Peruvian Amazon. Agric. Syst. 2025, 223, 104199. [Google Scholar] [CrossRef]
- Gliessman, S. Transforming Food Systems with Agroecology. Agroecol. Sustain. Food Syst. 2016, 40, 187–189. [Google Scholar] [CrossRef]
- Tittonell, P. Assessing Resilience and Adaptability in Agroecological Transitions. Agric. Syst. 2020, 184, 102862. [Google Scholar] [CrossRef]
- Wordofa, M.G.; Aweke, C.S.; Endris, G.S.; Tolesa, G.N.; Lemma, T.; Hassen, J.Y.; Lucantoni, D.; Mottet, A. Economic, Environmental and Social Indicators of Sustainability among Smallholders in Ethiopia: Based on Tool for Agroecological Performance Evaluation Data. Data Brief 2024, 52, 109988. [Google Scholar] [CrossRef]
- Rodríguez-León, C.H.; Sterling, A.; Trujillo-Briñez, A.; Suárez-Córdoba, Y.D.; Roa-Fuentes, L.L. Forest Attribute Dynamics in Secondary Forests: Insights for Advancing Ecological Restoration and Transformative Territorial Management in the Amazon. Diversity 2025, 17, 39. [Google Scholar] [CrossRef]
- Tittonell, P.; Piñeiro, G.; Garibaldi, L.A.; Dogliotti, S.; Olff, H.; Jobbagy, E.G. Agroecology in Large Scale Farming—A Research Agenda. Front. Sustain. Food Syst. 2020, 4, 584605. [Google Scholar] [CrossRef]
- Aweke, C.S.; Wordofa, M.G.; Endris, G.S.; Tolesa, G.N.; Tefera, T.L.; Hassen, J.Y.; Lucatoni, D.; Mottet, A. The Interface between Agroecology and Dietary Diversity: Evidence from Rural Ethiopia. Agroecol. Sustain. Food Syst. 2025, 49, 543–562. [Google Scholar] [CrossRef]
- Marino, D.; Curcio, F.; Felici, F.; Mazzocchi, G. Toward Evidence-Based Local Food Policy: An Agroecological Assessment of Urban Agriculture in Rome. Land 2023, 13, 30. [Google Scholar] [CrossRef]
- Costa-Pereira, I.; Aguiar, A.A.R.M.; Delgado, F.; Costa, C.A. A Methodological Framework for Assessing the Agroecological Performance of Farms in Portugal: Integrating TAPE and ACT Approaches. Sustainability 2024, 16, 3955. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the Design of Climate Change-Resilient Farming Systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef]
Element | Index | Methodology |
---|---|---|
Diversity (Div) | Crops | CAET Score 0–100% [39,42] Interpretation of CAET scores [56]: >70%: agroecological system; 60–70%: in agroecological transition; 50–60%: early-stage transition; <50%: not agroecological. |
Animals (including fish and insects) | ||
Trees (and other perennials) | ||
Diversity of activities, products, and services | ||
Synergies (Syn) | Crop–livestock integration | |
Soil–plant system management | ||
Integration with trees (agroforestry, silvopastoral, agrosilvopastoral systems) | ||
Connectivity among agroecosystem elements and the surrounding landscape | ||
Efficiency (Eff) | Use of external inputs | |
Soil fertility management | ||
Pest and disease management | ||
Productivity and household needs | ||
Recycling (Rec) | Biomass and nutrient recycling | |
Water conservation and efficiency | ||
Seed and breed management | ||
Use and production of renewable energy | ||
Resilience (Res) | Stability of production and capacity to withstand disturbances | |
Mechanisms to reduce vulnerability | ||
Environmental resilience and climate change adaptation capacity | ||
Level of indebtedness | ||
Average diversity | ||
Culture and food traditions (CFT) | Adequate diet and nutritional knowledge | |
Traditional identity and awareness (peasant/indigenous) | ||
Integration of local varieties and traditional knowledge into food preparation | ||
Co-creation and knowledge sharing (CKS) | Platforms for horizontal knowledge creation and sharing of good practices | |
Access to agroecological knowledge and farmers’ interest in agroecology | ||
Participation of farmers in grassroots networks and organizations | ||
Human and social values (HSV) | Women’s empowerment | |
Labor (productive conditions and social inequalities) | ||
Youth empowerment and migration | ||
Animal welfare [if applicable] | ||
Circular and solidarity economy | Locally marketed products and services | |
Producer networks, consumer relations, and role of intermediaries | ||
Local food system | ||
Responsible governance | Empowerment and social justice for producers | |
Producer organizations and associations | ||
Farmer participation in land and natural resource governance |
Dimension | Indicator | Methodology |
---|---|---|
Economic | Gross Value of Production per Utilized Agricultural Area (GVP 1/UAA 2) | GVP = Gross output—Intraconsumption [57] |
Gross Value of Production per Agricultural Work Unit (GVP/AWU 3) | ||
Net Value Added per Utilized Agricultural Area (VA/UAA) | VA = GVP—Intermediate consumption (e.g., seeds, fertilizers, pesticides, feed, veterinary services, fuel, energy, machinery, equipment, maintenance)—Depreciation [57] | |
Net Value Added per Agricultural Work Unit (VA/AWU) | ||
Intermediate Consumption per Agricultural Work Unit (IC/AWU) | Total sum of all intermediate consumption divided by agricultural work units | |
Net Income per Agricultural Work Unit (NI/AWU) | NI = VA—Cost of all external inputs (e.g., rent, taxes, interest, salaried labor, transport, other services) + Subsidies [57] | |
Production System Autonomy (VA/GVP) | Ratio (−1 to 1) of NAV to GPV; an indirect indicator of efficiency [31,57] | |
Perceived Income Evolution (PIE) | Score > 50: increasing income trend; Score = 50: stable income; Score < 50: decreasing income trend [30] | |
Environmental | Integrated Pest and Disease Management Index (IPDMI 4) | Score of 100 indicates high implementation of IPM practices and low pesticide use; score of 0 indicates low implementation and high pesticide use |
Chemical Pesticide Expenditure per Agricultural Work Unit (CPE/AWU) | Sum of expenses on chemical pesticides per agricultural work unit | |
Soil Health Index (SHI) | Score of 5 indicates very good soil health; score of 1 indicates poor soil health (adapted from [58], modified by [39]) | |
Chemical Fertilizer Expenditure per Agricultural Work Unit (CFE/AWU) | Sum of expenses on chemical fertilizers per agricultural work unit | |
Crop Diversity Index (CDI) | Gini-Simpson index of crop and livestock diversity [39] | |
Livestock Diversity Index (LDI) | ||
Natural Vegetation and Pollinator Presence on Farm (NVPPF) | Score of 100 indicates high presence of natural vegetation and pollinators; score of 0 reflects very low or absent presence [39] | |
Social | Dietary Diversity Index (DDI) | Score of 100 indicates high diversity of food group consumption; score of 0 reflects low consumption diversity [39,59] |
Household Food Self-Consumption Expenditure per Person (HSCE) | Sum of household food expenses for self-consumption divided by the number of farm residents | |
Youth Opportunity Index (YOI) | Score of 100 indicates high availability of training and employment opportunities for youth; score of 0 indicates very limited or no opportunities [39] | |
Youth Retention Index (YRI) | Score of 100 indicates strong desire of youth to remain in agriculture; score of 0 indicates willingness to migrate and lack of agricultural future perception [39] | |
Young Household Members Employed on the Farm (YHMEF 5) | Household composition data [30,39] | |
Women Employed on the Farm (WEF 5) | ||
Family Members Employed on the Farm (FMEF 5) | ||
Abbreviated Women’s Empowerment in Agriculture Index (A-WEAI) | Abbreviated index measuring women’s empowerment in agriculture (adapted from [60], modified by [39]) |
Farm Typology | CAET | Div | Syn | Eff | Rec | Res | CFT | CKS | HSV | CSE | RG |
---|---|---|---|---|---|---|---|---|---|---|---|
LCLF | 52 | 55 | 50 | 31 | 40 | 62 | 60 | 53 | 55 | 55 | 55 |
MLF | 56 | 58 | 58 | 38 | 46 | 61 | 60 | 55 | 56 | 67 | 58 |
FCF | 49 | 48 | 51 | 34 | 42 | 55 | 53 | 48 | 53 | 50 | 51 |
MFF | 60 | 65 | 65 | 48 | 55 | 61 | 70 | 63 | 56 | 65 | 57 |
Farm Typology | GVP/UAA (COP) | GVP/AWU (COP) | VA/UAA (COP) | VA/AWU (COP) | IC/AWU (COP) | NI/AWU (COP) | VA/GVP | PIE |
---|---|---|---|---|---|---|---|---|
LCLF | 2,001,512 | 22,724,144 | 1,088,451 | 12,803,468 | 828,735 | 8,351,260 | 0.56 | 50 |
MLF | 13,794,232 | 32,519,562 | 9,424,963 | 18,503,435 | 4,132,139 | 14,417,036 | 0.58 | 60 |
FCF | 3,490,349 | 15,675,420 | 1,877,969 | 9,262,117 | 1,524,738 | 6,846,363 | 0.60 | 75 |
MFF | 4,563,575 | 7,877,646 | 2,662,671 | 5,695,846 | 1,746,275 | 4,451,257 | 0.69 | 80 |
Farm Typology | IPDMI | CPE/AWU (COP) | SHI | CFE/AWU (COP) | CDI | LDI | NVPPF |
---|---|---|---|---|---|---|---|
LCLF | 37 | 122,807 | 3.76 | 42,438 | 22 | 59 | 70 |
MLF | 34 | 80,930 | 3.50 | 6250 | 13 | 38 | 77 |
FCF | 25 | 100,572 | 3.91 | 6964 | 24 | 48 | 75 |
MFF | 54 | 48,989 | 4.24 | 4766 | 64 | 53 | 97 |
Farm Typology | DDI | HSCE (COP) | YOI | YRI | YHMEF (%) | WEF (%) | FMEF (%) | A-WEAI |
---|---|---|---|---|---|---|---|---|
LCLF | 84 | 2,328,000 | 93 | 83 | 83 | 54 | 65 | 47 |
MLF | 84 | 1,897,600 | 75 | 38 | 31 | 62 | 65 | 64 |
FCF | 76 | 2,245,200 | 84 | 66 | 63 | 77 | 77 | 53 |
MFF | 84 | 1,635,000 | 94 | 50 | 67 | 79 | 85 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Córdoba, Y.D.; Barrera-García, J.A.; Sterling, A.; Rodríguez-León, C.H.; Tittonell, P.A. Evidence of Agroecological Performance in Production Systems Integrating Agroecology and Bioeconomy Actions Using TAPE in the Colombian Andean–Amazon Transition Zone. Sustainability 2025, 17, 9024. https://doi.org/10.3390/su17209024
Suárez-Córdoba YD, Barrera-García JA, Sterling A, Rodríguez-León CH, Tittonell PA. Evidence of Agroecological Performance in Production Systems Integrating Agroecology and Bioeconomy Actions Using TAPE in the Colombian Andean–Amazon Transition Zone. Sustainability. 2025; 17(20):9024. https://doi.org/10.3390/su17209024
Chicago/Turabian StyleSuárez-Córdoba, Yerson D., Jaime A. Barrera-García, Armando Sterling, Carlos H. Rodríguez-León, and Pablo A. Tittonell. 2025. "Evidence of Agroecological Performance in Production Systems Integrating Agroecology and Bioeconomy Actions Using TAPE in the Colombian Andean–Amazon Transition Zone" Sustainability 17, no. 20: 9024. https://doi.org/10.3390/su17209024
APA StyleSuárez-Córdoba, Y. D., Barrera-García, J. A., Sterling, A., Rodríguez-León, C. H., & Tittonell, P. A. (2025). Evidence of Agroecological Performance in Production Systems Integrating Agroecology and Bioeconomy Actions Using TAPE in the Colombian Andean–Amazon Transition Zone. Sustainability, 17(20), 9024. https://doi.org/10.3390/su17209024