Technological Innovations in Sustainable Civil Engineering: Advanced Materials, Resilient Design, and Digital Tools
Abstract
1. Introduction
2. Methodology
3. Innovations in Materials for Sustainable Civil Engineering
3.1. Recycled and Reused Materials
3.2. Materials Geopolymers and Alternative Cements
3.3. Biopolymers and Natural Fibers
3.4. Nanomaterials and Functional Systems
4. Smart and Resilient Structural Design
4.1. Principles of Resilience in Structural Design
4.2. Structural Modeling and Life Cycle
4.3. Modular and Adaptable Design
5. Digital Tools and Emerging Technologies
5.1. BIM
5.2. Digital Twins in Infrastructure
5.3. AI, Sensors, and IoT
5.4. 3D Printing and On-Site Automation
5.5. Practical Applications of Advanced Digital Tools
- External pressures: phenomena such as climate change and rapid urbanization generate new demands on infrastructure, requiring more adaptive and resilient solutions.
- Technological responses: low-carbon materials, resilience-oriented design, and digital tools emerge as alternatives that converge toward sustainability.
- Dynamic interactions: innovative materials require digital simulations to validate their performance under real conditions; resilient designs become feasible through the use of these materials and reach maximum efficiency when optimized with BIM, digital twins, IoT, or artificial intelligence.
6. Challenges, Barriers, and Opportunities
7. Future Perspectives and Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AASHTO | American Association of State Highway and Transportation Officials |
AI | Artificial Intelligence |
AIoT | Artificial Intelligence of Things |
Arup | International engineering and design firm based in London |
BD | Big Data |
BIM | Building Information Modeling |
BOF | Basic Oxygen Furnace |
CaO | Calcium Oxide |
CLT | Cross-Laminated Timber |
CMMS | Computerized Maintenance Management System |
CNTs | Carbon Nanotubes |
CO2 | Carbon Dioxide |
DfADR | Design for Adaptability, Deconstruction, and Reuse |
DfD | Design for Disassembly |
DFE | Design Flood Elevation |
DfMA | Design for Manufacture and Assembly |
DT | Digital Twins |
EAF | Electric Arc Furnace |
EPS | Expanded Polystyrene |
e-waste | Electronic Waste |
FM | Facility Management |
FEMA | Federal Emergency Management Agency |
GIS | Geographic Information System |
GO | Graphene Oxide |
Gt | Gigatonnes |
HBCD | Hexabromocyclododecane |
HDPE | High-Density Polyethylene |
IFC | Industry Foundation Classes |
IoT | Internet of Things |
ITZ | Interfacial Transition Zone |
LCA | Life Cycle Assessment |
LWC | Lightweight Concrete |
MDPI | Multidisciplinary Digital Publishing Institute |
MEMS | Micro-Electro-Mechanical Systems |
ML | Machine Learning |
MPa | Megapascal |
NS | Nano-Silica |
O&M | Operations and Maintenance |
PBD | Performance-Based Design |
PBEE | Performance-Based Earthquake Engineering |
PU | Polyurethane |
PZT | Piezoelectric Sensors |
RCA | Recycled Coarse Aggregate |
REDi | Resilience-Based Earthquake Design Initiative |
RFA | Recycled Fine Aggregate |
SDG | Sustainable Development Goals |
SHM | Structural Health Monitoring |
TiO2 | Titanium Dioxide |
TRL | Technology Readiness Level |
UCS | Unconfined Compressive Strength |
XPS | Extruded Polystyrene |
3D | Three-Dimensional |
3DCP | 3D Concrete Printing |
°C | Degrees Celsius |
References
- Lu, W.; Lou, J.; Ababio, B.K.; Zhong, R.Y.; Bao, Z.; Li, X.; Xue, F. Digital technologies for construction sustainability: Status quo, challenges, and future prospects. npj Mater. Sustain. 2024, 2, 10. [Google Scholar] [CrossRef]
- Jing, W.; Alias, A.H. Key Factors for Building Information Modelling Implementation in the Context of Environmental, Social, and Governance and Sustainable Development Goals Integration: A Systematic Literature Review. Sustainability 2024, 16, 9504. [Google Scholar] [CrossRef]
- Moradi, R.; Yazdi, M.; Haghighi, A.; Nedjati, A. Sustainable resilient E-waste management in London: A circular economy perspective. Heliyon 2024, 10, e34071. [Google Scholar] [CrossRef]
- Goel, A.; Masurkar, S.; Pathade, G.R. An Overview of Digital Transformation and Environmental Sustainability: Threats, Opportunities, and Solutions. Sustainability 2024, 16, 11079. [Google Scholar] [CrossRef]
- Díaz, C.G.; Zambrana-Vasquez, D.; Bartolomé, C. Building Resilient Cities: A Comprehensive Review of Climate Change Adaptation Indicators for Urban Design. Energies 2024, 17, 1959. [Google Scholar] [CrossRef]
- Favier, A.; Westernhagen, C.H.-v.; Krieg, M.; Kumawat, B. Integrating social capital with urban infrastructure networks for more resilient cities. arXiv 2025, arXiv:2502.06328. [Google Scholar] [CrossRef]
- Bichueti, R.S.; Leal Filho, W.; Gomes, C.M.; Kneipp, J.M.; Costa, C.R.; Frizzo, K. Climate Change and Urban Resilience in Smart Cities: Adaptation and Mitigation Strategies in Brazil and Germany. Urban Sci. 2025, 9, 179. [Google Scholar] [CrossRef]
- Sharifi, A. Resilience of urban social-ecological-technological systems (SETS): A review. Sustain. Cities Soc. 2023, 99, 104910. [Google Scholar] [CrossRef]
- Korniejenko, K.; Mikuła, J.; Brudny, K.; Aruova, L.; Zhakanov, A.; Jexembayeva, A.; Zhaksylykova, L. A Review of Industrial By-Product Utilization and Future Pathways of Circular Economy: Geopolymers as Modern Materials for Sustainable Building. Sustainability 2025, 17, 4536. [Google Scholar] [CrossRef]
- Zhuang, Z.; Xu, F.; Ye, J.; Hu, N.; Jiang, L.; Weng, Y. A comprehensive review of sustainable materials and toolpath optimization in 3D concrete printing. npj Mater. Sustain. 2024, 2, 12. [Google Scholar] [CrossRef]
- Sádaba, J.; Luzarraga, A.; Lenzi, S. Designing for Climate Adaptation: A Case Study Integrating Nature-Based Solutions with Urban Infrastructure. Urban Sci. 2025, 9, 74. [Google Scholar] [CrossRef]
- Datola, G. Implementing urban resilience in urban planning: A comprehensive framework for urban resilience evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Khoja, A.; Danylenko, O. Charting climate adaptation integration in smart building rating systems: A comparative study. Front. Built Environ. 2024, 10, 1333146. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Gamil, Y.; Iftikhar, B.; Murtaza, H. Towards modern sustainable construction materials: A bibliographic analysis of engineered geopolymer composites. Front. Mater. 2023, 10, 1277567. [Google Scholar] [CrossRef]
- Zahedi, F.; Alavi, H.; Majrouhi Sardroud, J.; Dang, H. Digital Twins in the Sustainable Construction Industry. Buildings 2024, 14, 3613. [Google Scholar] [CrossRef]
- Spina, D.; Carbone, R.; Pulvirenti, A.; Rizzo, M.; D’Amico, M.; Di Vita, G. What Gets Measured Gets Managed-Circular Economy Indicators for the Valorization of By-Products in the Olive Oil Supply Chain: A Systematic Review. Agronomy 2024, 14, 2879. [Google Scholar] [CrossRef]
- Lopes, P.; Sobral, M.M.C.; Lopes, G.R.; Martins, Z.E.; Passos, C.P.; Petronilho, S.; Ferreira, I.M.P.L.V.O. Mycotoxins’ Prevalence in Food Industry By-Products: A Systematic Review. Toxins 2023, 15, 249. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Huamán-Carrión, M.L.; Calsina-Ponce, W.C.; Cruz, G.D.; Calderón Huamaní, D.F.; Cabel-Moscoso, D.J.; Garcia-Espinoza, A.J.; Sucari-León, R.; Aroquipa-Durán, Y.; Muñoz-Saenz, J.C.; et al. Technological Innovations and Circular Economy in the Valorization of Agri-Food By-Products: Advances, Challenges and Perspectives. Foods 2025, 14, 1950. [Google Scholar] [CrossRef]
- Alibeigibeni, A.; Stochino, F.; Zucca, M.; Gayarre, F.L. Enhancing Concrete Sustainability: A Critical Review of the Performance of Recycled Concrete Aggregates (RCAs) in Structural Concrete. Buildings 2025, 15, 1361. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Q.; Zhou, L.; Gao, F.; Deng, Z.; Wang, J.; Guo, Z.; Ding, H. Lifecycle Assessment and Lifecycle Cost Analysis of Sustainable Concrete Incorporating Recycled Aggregates. Sustainability 2025, 17, 1779. [Google Scholar] [CrossRef]
- Mandal, A.; Shiuly, A. Exploring mechanical characteristics of recycled concrete aggregates from demolition waste: Advancements, challenges, and future directions for sustainable construction: A review. Discov. Civ. Eng. 2025, 2, 33. [Google Scholar] [CrossRef]
- Ren, Z.; Li, D. Application of Steel Slag as an Aggregate in Concrete Production: A Review. Materials 2023, 16, 5841. [Google Scholar] [CrossRef]
- Oddo, M.C.; Cavaleri, L.; La Mendola, L.; Bilal, H. Integrating Plastic Waste into Concrete: Sustainable Solutions for the Environment. Materials 2024, 17, 3408. [Google Scholar] [CrossRef] [PubMed]
- Flores Nicolás, A.; Menchaca Campos, E.C.; Flores Nicolás, M.; Martínez González, J.J.; González Noriega, O.A.; Uruchurtu Chavarín, J. Influence of Recycled High-Density Polyethylene Fibers on the Mechanical and Electrochemical Properties of Reinforced Concrete. Fibers 2024, 12, 24. [Google Scholar] [CrossRef]
- Du, T.; Yang, Y.; Cao, H.; Si, N.; Kordestani, H.; Sktani, Z.D.; Arab, A.; Zhang, C. Rubberized Concrete: Effect of the Rubber Size and Content on Static and Dynamic Behavior. Buildings 2024, 14, 1541. [Google Scholar] [CrossRef]
- Khouadjia, M.L.; Bensalem, S.; Belebchouche, C.; Boumaza, A.; Hamlaoui, S.; Czarnecki, S. Sustainable Geopolymer Tuff Composites Utilizing Iron Powder Waste: Rheological and Mechanical Performance Evaluation. Sustainability 2025, 17, 1240. [Google Scholar] [CrossRef]
- Khasawneh, M.A. Geopolymer concrete in construction projects: A review. Discov. Civ. Eng. 2025, 2, 124. [Google Scholar] [CrossRef]
- Ikotun, J.O.; Aderinto, G.E.; Madirisha, M.M.; Katte, V.Y. Geopolymer Cement in Pavement Applications: Bridging Sustainability and Performance. Sustainability 2024, 16, 5417. [Google Scholar] [CrossRef]
- Matsimbe, J.; Dinka, M.; Olukanni, D.; Musonda, I. Geopolymer: A Systematic Review of Methodologies. Materials 2022, 15, 6852. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, C.; Liang, Y.; Luo, J.; Wang, X.; Feng, Y.; Li, Y.; Wang, Q.; Abomohra, A.E. Life Cycle Assessment and Impact Correlation Analysis of Fly Ash Geopolymer Concrete. Materials 2021, 14, 7375. [Google Scholar] [CrossRef]
- Ramesh, V.; Muthramu, B.; Rebekhal, D. A review of sustainability assessment of geopolymer concrete through AI-based life cycle analysis. AI Civ. Eng. 2025, 4, 3. [Google Scholar] [CrossRef]
- Martínez, A.; Miller, S.A. Life cycle assessment and production cost of geopolymer concrete: A meta-analysis. Resour. Conserv. Recycl. 2025, 215, 108018. [Google Scholar] [CrossRef]
- Kolade, A.S.; Ikotun, B.D.; Oyejobi, D.O. A Review of the Chemistry, Waste Utilization, Mix Design and Performance Evaluation of Geopolymer Concrete. Iran. J. Sci. Technol. Trans. Civ. Eng. 2025. [Google Scholar] [CrossRef]
- Verma, M.; Upreti, K.; Vats, P.; Singh, S.; Singh, P.; Dev, N.; Kumar Mishra, D.; Tiwari, B. Experimental Analysis of Geopolymer Concrete: A Sustainable and Economic Concrete Using the Cost Estimation Model. Adv. Mater. Sci. Eng. 2022, 2022, 7488254. [Google Scholar] [CrossRef]
- Abdulhaleem, K.N.; Hamada, H.M.; Osman, A.I.; Yousif, S.T.; Humada, A.M.; Majdi, A. A Comprehensive Review of Sustainable Geopolymer Concrete Using Palm Oil Clinker: Environmental and Engineering Aspects. Energy Sci. Eng. 2025, 13, 958–979. [Google Scholar] [CrossRef]
- Kriven, W.M.; Leonelli, C.; Provis, J.L.; Boccaccini, A.R.; Attwell, C.; Ducman, V.S.; Ferone, C.; Rossignol, S.; Luukkonen, T.; van Deventer, J.S.J.; et al. Why geopolymers and alkali-activated materials are key components of a sustainable world: A perspective contribution. J. Am. Ceram. Soc. 2024, 107, 5159–5177. [Google Scholar] [CrossRef]
- Geremew, A.; Outtier, A.; De Winne, P.; Demissie, T.A.; De Backer, H. An Experimental Investigation on the Effect of Incorporating Natural Fibers on the Mechanical and Durability Properties of Concrete by Using Treated Hybrid Fiber-Reinforced Concrete Application. Fibers 2025, 13, 26. [Google Scholar] [CrossRef]
- Ntsie, O.D.; Phiri, R.; Boonyasopon, P.; Rangappa, S.M.; Siengchin, S. Advancing sustainable infrastructure: Natural fiber-reinforced composites in engineering. Discov. Appl. Sci. 2025, 7, 884. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Mohd Basri, M.S.; Rayung, M.; Abu, F.; Ahmad, S.b.; Norizan, M.N.; Osman, S.; Sarifuddin, N.; Desa, M.S.; Abdullah, U.H.; et al. A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications. Polymers 2022, 14, 3698. [Google Scholar] [CrossRef]
- Deylaghian, S.; Nikooee, E.; Habibagahi, G.; Nagel, T. Inulin biopolymer as a novel material for sustainable soil stabilization. Sci. Rep. 2024, 14, 31078. [Google Scholar] [CrossRef]
- Ilman, B.; Balkis, A.P. Review on Biopolymer Binders as Renewable, Sustainable Stabilizers for Soils. Int. J. Geosynth. Ground Eng. 2023, 9, 49. [Google Scholar] [CrossRef]
- Armistead, S.J.; Smith, C.C.; Staniland, S.S. Sustainable biopolymer soil stabilisation: The effect of microscale chemical characteristics on macroscale mechanical properties. Acta Geotech. 2023, 18, 3213–3227. [Google Scholar] [CrossRef]
- Jamshaid, H.; Ali, H.; Mishra, R.K.; Nazari, S.; Chandan, V. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material. Materials 2023, 16, 6905. [Google Scholar] [CrossRef]
- McKay, I.; Vargas, J.; Yang, L.; Felfel, R.M. A Review of Natural Fibres and Biopolymer Composites: Progress, Limitations, and Enhancement Strategies. Materials 2024, 17, 4878. [Google Scholar] [CrossRef]
- Huston, D.; Dewoolkar, M.M.; Gregory, D.; Abdul Qader, M.; Yeboah, B. Chitosan Shrinking Fibers for Curing-Initiated Stressing to Enhance Concrete Durability. Materials 2025, 18, 1574. [Google Scholar] [CrossRef]
- Soliman, A.; Hafeez, G.; Erkmen, E.; Ganesan, R.; Ouf, M.; Hammad, A.; Eicker, U.; Moselhi, O. Innovative construction material technologies for sustainable and resilient civil infrastructure. Mater. Today Proc. 2022, 60, 365–372. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, Q.; Peng, X.; Xia, K.; Xu, B. A Review of the Effects of Nanomaterials on the Properties of Concrete. Buildings 2025, 15, 2363. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Firoozi, A.A.; Maghami, M.R. Transformative Impacts of Nanotechnology on Sustainable Construction: A Comprehensive Review. Results Eng. 2025, 26, 104973. [Google Scholar] [CrossRef]
- Udumulla, D.; Ginigaddara, T.; Jayasinghe, T.; Mendis, P.; Baduge, S. Effect of Graphene Oxide Nanomaterials on the Durability of Concrete: A Review on Mechanisms, Provisions, Challenges, and Future Prospects. Materials 2024, 17, 2411. [Google Scholar] [CrossRef] [PubMed]
- Di Mundo, R.; Labianca, C.; Carbone, G.; Notarnicola, M. Recent Advances in Hydrophobic and Icephobic Surface Treatments of Concrete. Coatings 2020, 10, 449. [Google Scholar] [CrossRef]
- Hamdany, A.H.; Ding, Y.; Qian, S. Graphene-Based TiO2 Cement Composites to Enhance the Antibacterial Effect of Self-Disinfecting Surfaces. Catalysts 2023, 13, 1313. [Google Scholar] [CrossRef]
- Lima, G.T.; Silvestro, L.; Tambara Júnior, L.U.; Cheriaf, M.; Rocha, J.C. Autonomous Self-Healing Agents in Cementitious Materials: Parameters and Impacts on Mortar Properties. Buildings 2024, 14, 2000. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Dong, Q.; Che, S.; Li, R.; Tang, K.H.D. Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. Sci. Total Environ. 2025, 969, 178911. [Google Scholar] [CrossRef] [PubMed]
- Boey, J.Y.; Lee, C.K.; Tay, G.S. Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers 2022, 14, 3737. [Google Scholar] [CrossRef]
- Awoyera, P.O.; Adesina, A. Plastic wastes to construction products: Status, limitations and future perspective. Case Stud. Constr. Mater. 2020, 12, e00330. [Google Scholar] [CrossRef]
- Verma, S.K.; Prasad, A.; Sonika; Katiyar, V. State of art review on sustainable biodegradable polymers with a market overview for sustainability packaging. Mater. Today Sustain. 2024, 26, 100776. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Firoozi, A.A.; Oyejobi, D.O.; Avudaiappan, S.; Flores, E.S. Emerging trends in sustainable building materials: Technological innovations, enhanced performance, and future directions. Results Eng. 2024, 24, 103521. [Google Scholar] [CrossRef]
- Wong, D.; Fabito, G.; Debnath, S.; Anwar, M.; Davies, I.J. A critical review: Recent developments of natural fiber/rubber reinforced polymer composites. Clean. Mater. 2024, 13, 100261. [Google Scholar] [CrossRef]
- Tănase, M.; Diniță, A.; Popovici, D.R.; Portoacă, A.I.; Călin, C.; Sirbu, E.-E. Comprehensive Bibliometric Review on the Sustainability and Environmental Impact of Fiber-Reinforced Polymers. Fibers 2024, 12, 104. [Google Scholar] [CrossRef]
- mahboubizadeh, S.; Sadeq, A.; Arzaqi, Z.; Ashkani, O.; Samadoghli, M. Advancements in fiber-reinforced polymer (FRP) composites: An extensive review. Discov. Mater. 2024, 4, 22. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 16855. [Google Scholar] [CrossRef]
- Li, H.; Zhang, N.; Wang, L.; Lu, J.-X.; Dong, R.; Duan, H.; Yang, J. The challenge of recycling fast-growing fibre-reinforced polymer waste. Nat. Rev. Mater. 2025, 10, 81–82. [Google Scholar] [CrossRef]
- Rihan, M.A.M.; Onchiri, R.O.; Gathimba, N.; Sabuni, B. Effect of elevated temperature on the mechanical properties of geopolymer concrete: A critical review. Discov. Civ. Eng. 2024, 1, 24. [Google Scholar] [CrossRef]
- Mohan Kumar, S.G.; Kinuthia, J.M.; Oti, J.; Adeleke, B.O. Geopolymer Chemistry and Composition: A Comprehensive Review of Synthesis, Reaction Mechanisms, and Material Properties—Oriented with Sustainable Construction. Materials 2025, 18, 3823. [Google Scholar] [CrossRef]
- Cheng, D.; Reiner, D.M.; Yang, F.; Cui, C.; Meng, J.; Shan, Y.; Liu, Y.; Tao, S.; Guan, D. Projecting future carbon emissions from cement production in developing countries. Nat. Commun. 2023, 14, 8213. [Google Scholar] [CrossRef]
- Volaity, S.S.; Aylas-Paredes, B.K.; Han, T.; Huang, J.; Sridhar, S.; Sant, G.; Kumar, A.; Neithalath, N. Towards decarbonization of cement industry: A critical review of electrification technologies for sustainable cement production. npj Mater. Sustain. 2025, 3, 23. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Anaele, J.U.; Oke, T.M.; Kareem, S.A.; Adediran, M.; Ajibuwa, O.A.; Anabaranze, Y.O. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 2023, 83, 234–250. [Google Scholar] [CrossRef]
- Barta, D.G.; Simion, I.; Tiuc, A.E.; Vasile, O. Mycelium-Based Composites as a Sustainable Solution for Waste Management and Circular Economy. Materials 2024, 17, 404. [Google Scholar] [CrossRef]
- Shin, H.-J.; Ro, H.-S.; Kawauchi, M.; Honda, Y. Review on mushroom mycelium-based products and their production process: From upstream to downstream. Bioresour. Bioprocess. 2025, 12, 3. [Google Scholar] [CrossRef]
- Ali, A.; Issa, A.; Elshaer, A. A Comprehensive Review and Recent Trends in Thermal Insulation Materials for Energy Conservation in Buildings. Sustainability 2024, 16, 8782. [Google Scholar] [CrossRef]
- Rossignolo, G.; Malucelli, G.; Lorenzetti, A. Recycling of polyurethanes: Where we are and where we are going. Green Chem. 2024, 26, 1132–1152. [Google Scholar] [CrossRef]
- Deng, J.; Liu, W.; Gao, L.; Jia, T.; He, Y.; Mao, T.; Hussain, J. A Review of Distribution and Profiles of HBCD in Different Environmental Media of China. Molecules 2024, 29, 36. [Google Scholar] [CrossRef] [PubMed]
- Canli, O.; Güzel, B.; Öktem Olgun, E.; Çetintürk, K.; Uludağ, İ.; Görhan, B.; Dede, Ş.; Erçel, Ş.; Karademir, A. Evaluation of hexabromocyclododecane (HBCD), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) outflows during the destruction of HBCD wastes in a hazardous waste incinerator. Sci. Total Environ. 2024, 927, 172317. [Google Scholar] [CrossRef] [PubMed]
- Ouda, M.; Abu Sanad, A.A.; Abdelaal, A.; Krishna, A.; Kandah, M.; Kurdi, J. A Comprehensive Review of Sustainable Thermal and Acoustic Insulation Materials from Various Waste Sources. Buildings 2025, 15, 2876. [Google Scholar] [CrossRef]
- Raza, M.; Farhan, A.; Abu-Jdayil, B. Lignocellulose−based insulation materials: A review of sustainable and biodegradable solutions for energy efficiency. Int. J. Thermofluids 2024, 24, 100844. [Google Scholar] [CrossRef]
- Marín-Calvo, N.; González-Serrud, S.; James-Rivas, A. Thermal insulation material produced from recycled materials for building applications: Cellulose and rice husk-based material. Front. Built Environ. 2023, 9, 1271317. [Google Scholar] [CrossRef]
- Füchsl, S.; Rheude, F.; Röder, H. Life cycle assessment (LCA) of thermal insulation materials: A critical review. Clean. Mater. 2022, 5, 100119. [Google Scholar] [CrossRef]
- Lu, Z.; Hauschild, M.; Ottosen, L.M.; Ambaye, T.G.; Zerbino, P.; Aloini, D.; Lima, A.T. Climate mitigation potential of biobased insulation materials: A comprehensive review and categorization. J. Clean. Prod. 2024, 470, 143356. [Google Scholar] [CrossRef]
- Mayar, K.; Carmichael, D.G.; Shen, X. Resilience and Systems—A Building Structure Case Example. Buildings 2023, 13, 1520. [Google Scholar] [CrossRef]
- Mostafaei, H.; Ashoori Barmchi, M.; Bahmani, H. Seismic Resilience and Sustainability: A Comparative Analysis of Steel and Reinforced Structures. Buildings 2025, 15, 1613. [Google Scholar] [CrossRef]
- Lu, J.; Li, Z.; Teng, J. Seismic Resilience Evaluation of High-Rise Frame-Core Tube Structure Considering Structural Network Performance Loss and Repair Path. Buildings 2025, 15, 23. [Google Scholar] [CrossRef]
- Zhao, H.; Takahashi, N. Resilience Evaluation of Post-Earthquake Functional Recovery for Precast Prestressed Concrete Buildings. Appl. Sci. 2025, 15, 6994. [Google Scholar] [CrossRef]
- Mannucci, S.; Rosso, F.; D’Amico, A.; Bernardini, G.; Morganti, M. Flood Resilience and Adaptation in the Built Environment: How Far along Are We? Sustainability 2022, 14, 4096. [Google Scholar] [CrossRef]
- Meguro, W.; Briones, J.I.; Teeples, E.; Fletcher, C.H. Establishing a Sea Level Rise-Adjusted Design Flood Elevation for Buildings: A Comparative Study of Methods. Water 2025, 17, 2376. [Google Scholar] [CrossRef]
- Maiwald, H.; Schwarz, J.; Kaufmann, C.; Langhammer, T.; Golz, S.; Wehner, T. Innovative Vulnerability and Risk Assessment of Urban Areas against Flood Events: Prognosis of Structural Damage with a New Approach Considering Flow Velocity. Water 2022, 14, 2793. [Google Scholar] [CrossRef]
- Park, K.; Choi, S.-H.; Yu, I. Risk Type Analysis of Building on Urban Flood Damage. Water 2021, 13, 2505. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, G.; Wang, D. Assessing Community-Level Flood Resilience: Analyzing Functional Interdependencies Among Building Sectors. Appl. Sci. 2025, 15, 3161. [Google Scholar] [CrossRef]
- Hu, D.; Zhang, T.; Jin, Q. Investigation of Wind Pressure Dynamics on Low-Rise Buildings in Sand-Laden Wind Environments. Buildings 2025, 15, 2779. [Google Scholar] [CrossRef]
- Aguirre-López, M.A.; Hueyotl-Zahuantitla, F.; Martínez-Vázquez, P. Passive Control Measures of Wind Flow around Tall Buildings. Buildings 2024, 14, 1514. [Google Scholar] [CrossRef]
- Huang, B.; Ou, Z.; Zhao, G.; Wang, J.; Liu, L.; Lv, S.; Huang, B.; Liu, X. A Systematic Analysis of Influencing Factors on Wind Resilience in a Coastal Historical District of China. Appl. Sci. 2025, 15, 8116. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Yuan, J.; Gu, T.; Ling, S.; Zhan, H. Unlocking Physical Resilience Capacities of Building Systems: An Enhanced Network Analysis Approach. Buildings 2025, 15, 641. [Google Scholar] [CrossRef]
- Strelets, K.; Zaborova, D.; Kokaya, D.; Petrochenko, M.; Melekhin, E. Building Information Modeling (BIM)-Based Building Life Cycle Assessment (LCA) Using Industry Foundation Classes (IFC) File Format. Sustainability 2025, 17, 2848. [Google Scholar] [CrossRef]
- Anwar, G.A.; Akber, M.Z.; Ahmed, H.A.; Hussain, M.; Nawaz, M.; Anwar, J.; Chan, W.-K.; Lee, H.-H. Life-Cycle Performance Modeling for Sustainable and Resilient Structures under Structural Degradation: A Systematic Review. Buildings 2024, 14, 3053. [Google Scholar] [CrossRef]
- Zhangabay, N.; Giyasov, A.; Oner, A.; Zhangabay, A.; Tursunkululy, T.; Bakhbergen, S. Analysis of the Impact of Residential Building Shape and Orientation on Energy Efficiency. Buildings 2025, 15, 1359. [Google Scholar] [CrossRef]
- Nazari, F.; Dixit, M.; Yan, W.; Aryal, A. Building shape optimization based on interconnected embodied and operational energy and carbon impacts. Energy Build. 2024, 325, 114933. [Google Scholar] [CrossRef]
- Bacheva, T.S.; Raposo Grau, J.F. Embodied Impacts in Buildings: A Systematic Review of Life Cycle Gaps and Sectoral Integration Strategies. Buildings 2025, 15, 1661. [Google Scholar] [CrossRef]
- Zohourian, M.; Pamidimukkala, A.; Kermanshachi, S.; Almaskati, D. Modular Construction: A Comprehensive Review. Buildings 2025, 15, 2020. [Google Scholar] [CrossRef]
- Parracho, D.F.R.; Nour El-Din, M.; Esmaeili, I.; Freitas, S.S.; Rodrigues, L.; Poças Martins, J.; Corvacho, H.; Delgado, J.M.P.Q.; Guimarães, A.S. Modular Construction in the Digital Age: A Systematic Review on Smart and Sustainable Innovations. Buildings 2025, 15, 765. [Google Scholar] [CrossRef]
- Liu, H.; Zainul Abidin, N. A Review on Research of Prefabricated Building Costs: Exploring Collaborations, Intellectual Basis, and Research Trends. Sustainability 2024, 16, 9823. [Google Scholar] [CrossRef]
- Luo, X.; Zheng, X.; Liao, C.; Xiao, Y.; Deng, C.; Liu, S.; Chen, Q. Research on the Modular Design Method and Application of Prefabricated Residential Buildings. Buildings 2024, 14, 3014. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Choque-Quispe, D.; Ramos-Pacheco, B.S.; Peralta Guevara, D.E. BIM en el diseño y construcción de plantas agroindustriales. Rev. De Investig. En Cienc. Tecnol. Y Soc. 2020, 1, 6. [Google Scholar]
- De Araujo, V.; Christoforo, A. The Global Cross-Laminated Timber (CLT) Industry: A Systematic Review and a Sectoral Survey of Its Main Developers. Sustainability 2023, 15, 7827. [Google Scholar] [CrossRef]
- Behera, D.; Liu, K.-Y.; Rachman, F.; Worku, A.M. Innovations and Applications in Lightweight Concrete: Review of Current Practices and Future Directions. Buildings 2025, 15, 2113. [Google Scholar] [CrossRef]
- Staehr, E.R.; Stevik, T.K.; Houck, L.D. Adaptability in the Building Process: A Multifaceted Perspective Across the Life Cycle of a Building. Buildings 2025, 15, 1119. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, L.; Yang, W.; Tian, L.; Chan, M. A Systematic Review on the Research and Development of Adaptive Buildings. Buildings 2025, 15, 1593. [Google Scholar] [CrossRef]
- Walsh, S.J.; Shotton, E. Integrating Design for Adaptability, Disassembly, and Reuse into Architectural Design Practice. Sustainability 2024, 16, 7771. [Google Scholar] [CrossRef]
- Mousavi, Y.; Gharineiat, Z.; Karimi, A.A.; McDougall, K.; Rossi, A.; Gonizzi Barsanti, S. Digital Twin Technology in Built Environment: A Review of Applications, Capabilities and Challenges. Smart Cities 2024, 7, 2594–2615. [Google Scholar] [CrossRef]
- Venkateswarlu, N.; Sathiyamoorthy, M. Sustainable innovations in digital twin technology: A systematic review about energy efficiency and indoor environment quality in built environment. Front. Built Environ. 2025, 11, 1523464. [Google Scholar] [CrossRef]
- Qiu, S.; Zaheer, Q.; Ali, F.; Wajid, S.; Chen, H.; Ai, C.; Wang, J. Exploring the impact of digital twin technology in infrastructure management: A comprehensive review. J. Civ. Eng. Manag. 2025, 31, 395–417. [Google Scholar] [CrossRef]
- Badenko, V.; Bolshakov, N.; Celani, A.; Puglisi, V. Principles for Sustainable Integration of BIM and Digital Twin Technologies in Industrial Infrastructure. Sustainability 2024, 16, 9885. [Google Scholar] [CrossRef]
- Plevris, V.; Papazafeiropoulos, G. AI in Structural Health Monitoring for Infrastructure Maintenance and Safety. Infrastructures 2024, 9, 225. [Google Scholar] [CrossRef]
- Gharavi, H.; Taban, F.; Korivand, S.; Jalili, N. AI-Powered Structural Health Monitoring Using Multi-Type and Multi-Position PZT Networks. Sensors 2025, 25, 5148. [Google Scholar] [CrossRef] [PubMed]
- Sivasuriyan, A.; Vijayan, D.S.; Devarajan, P.; Stefańska, A.; Dixit, S.; Podlasek, A.; Sitek, W.; Koda, E. Emerging Trends in the Integration of Smart Sensor Technologies in Structural Health Monitoring: A Contemporary Perspective. Sensors 2024, 24, 8161. [Google Scholar] [CrossRef]
- Rosca, C.-M.; Stancu, A. Integration of AI in Self-Powered IoT Sensor Systems. Appl. Sci. 2025, 15, 7008. [Google Scholar] [CrossRef]
- Prakash, V.; Debono, C.J.; Musarat, M.A.; Borg, R.P.; Seychell, D.; Ding, W.; Shu, J. Structural Health Monitoring of Concrete Bridges Through Artificial Intelligence: A Narrative Review. Appl. Sci. 2025, 15, 4855. [Google Scholar] [CrossRef]
- Hutyra, A.; Bańkosz, M.; Tyliszczak, B. Technology for Automated Production of High-Performance Building Compounds for 3D Printing. Materials 2024, 17, 3829. [Google Scholar] [CrossRef]
- Kantaros, A.; Zacharia, P.; Drosos, C.; Papoutsidakis, M.; Pallis, E.; Ganetsos, T. Smart Infrastructure and Additive Manufacturing: Synergies, Advantages, and Limitations. Appl. Sci. 2025, 15, 3719. [Google Scholar] [CrossRef]
- Wang, Y.; Aslani, F.; Dyskin, A.; Pasternak, E. Digital Twin Applications in 3D Concrete Printing. Sustainability 2023, 15, 2124. [Google Scholar] [CrossRef]
- Ma, G.; Buswell, R.; Leal da Silva, W.R.; Wang, L.; Xu, J.; Jones, S.Z. Technology readiness: A global snapshot of 3D concrete printing and the frontiers for development. Cem. Concr. Res. 2022, 156, 106774. [Google Scholar] [CrossRef]
- Palazzo, A. How 3D Printers for Houses Can Reduce CO2 Emissions. Buildings 2025, 15, 599. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, G.; Hu, Z.; Chai, C.; Li, H. Bridge Digital Twin for Practical Bridge Operation and Maintenance by Integrating GIS and BIM. Buildings 2024, 14, 3731. [Google Scholar] [CrossRef]
- Choi, Y.; Park, H.W.; Mi, Y.; Song, S. Crack Detection and Analysis of Concrete Structures Based on Neural Network and Clustering. Sensors 2024, 24, 1725. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, S.V.; Hellerbrand, S.; Weininger, F.; Thiel, C. Strategies for Minimizing Environmental Impact in Construction: A Case Study of a Cementitious 3D Printed Lost Formwork for a Staircase. Materials 2025, 18, 825. [Google Scholar] [CrossRef]
- Cao, Y.; Kamaruzzaman, S.N.; Aziz, N.M. Building Information Modeling (BIM) Capabilities in the Operation and Maintenance Phase of Green Buildings: A Systematic Review. Buildings 2022, 12, 830. [Google Scholar] [CrossRef]
- Gordo-Gregorio, P.; Alavi, H.; Forcada, N. Decoding BIM Challenges in Facility Management Areas: A Stakeholders’ Perspective. Buildings 2025, 15, 811. [Google Scholar] [CrossRef]
- Jayasinghe, S.; Sun, Z.; Sidiq, A.; Mahmoodian, M.; Shahrivar, F.; Setunge, S. Smart Structural Monitoring: Real-Time Bridge Response Using Digital Twins and Inverse Analysis. Sensors 2025, 25, 3513. [Google Scholar] [CrossRef]
- Junges, R.; Lomazzi, L.; Miele, L.; Giglio, M.; Cadini, F. Mitigating the Impact of Temperature Variations on Ultrasonic Guided Wave-Based Structural Health Monitoring through Variational Autoencoders. Sensors 2024, 24, 1494. [Google Scholar] [CrossRef]
- Mardanshahi, A.; Sreekumar, A.; Yang, X.; Barman, S.K.; Chronopoulos, D. Sensing Techniques for Structural Health Monitoring: A State-of-the-Art Review on Performance Criteria and New-Generation Technologies. Sensors 2025, 25, 1424. [Google Scholar] [CrossRef]
- Raj, K.; Mastrolembo Ventura, S.; Comai, S.; Ciribini, A.L. Toward a Sustainable and Efficient Design Process: A BIM-Based Organisational Framework for Public Agencies—An Italian Case Study. Sustainability 2025, 17, 6716. [Google Scholar] [CrossRef]
- Shivendra, B.T.; Shahaji; Sharath Chandra, S.; Singh, A.K.; Kumar, R.; Kumar, N.; Tantri, A.; Naganna, S.R. A Path towards SDGs: Investigation of the Challenges in Adopting 3D Concrete Printing in India. Infrastructures 2024, 9, 166. [Google Scholar] [CrossRef]
- Ma, J.; Samarasinghe, D.A.; Rotimi, J.O.; Zuo, K. Supply Chain Landscape of 3D Printed Buildings: A Stakeholder Decision Support Framework. Buildings 2024, 14, 1811. [Google Scholar] [CrossRef]
- Del Savio, A.A.; Galantini Velarde, K.; Díaz-Garay, B.; Valcárcel Pollard, E. A Methodology for Embedding Building Information Modelling (BIM) in an Undergraduate Civil Engineering Program. Appl. Sci. 2022, 12, 12203. [Google Scholar] [CrossRef]
Innovative Material | Technical Properties | Environmental Properties | References | Traditional Material | Technical Properties | Environmental Properties | References |
---|---|---|---|---|---|---|---|
Bioplastics | Generally lower mechanical strength, though improvable through reinforcement with natural or inorganic fibers. Compatible with conventional molding and printing processes. | Produced from renewable resources. Biodegradable or compostable under controlled conditions. Lower carbon footprint than fossil plastics, although with higher costs and energy demands. | [53,54,55] | Petroleum-derived plastics | High strength, durability, and versatility. Good barrier properties against gases and liquids. | Non-biodegradable, persisting for centuries in the environment. High carbon footprint and dependence on fossil fuels. Contribute to waste accumulation and microplastics. | [56,57] |
Biocomposites | Lightweight, with good specific strength; favorable thermal and acoustic properties; processable using conventional techniques (injection, extrusion, compression). | Manufactured from natural fibers (flax, kenaf, jute, bamboo, sisal) and biodegradable or recyclable matrices; low carbon footprint and composting potential; reduced dependence on fossil-based polymers. | [58,59,60] | Synthetic composites | High mechanical strength and durability; standardized and widely used in structural and automotive applications. | Difficult to recycle, high energy consumption in production, dependence on fossil resources; limited biodegradability. | [61,62,63] |
Biocements/Geopolymers | High mechanical strength (>80 MPa); excellent thermal stability (retains >90% of compressive strength after exposure to 800 °C). | Reduction of CO2 emissions by 40–80%; use of industrial residues such as fly ash and granulated slag. | [27,64,65] | Portland cement | Excellent strength and global standardization as a base construction material. | Very high CO2 emissions (global 2 Gt in 2018); ~7% of global CO2 emissions. | [66,67] |
Mycelium | Low mechanical strength (far below conventional structural materials); good thermal insulation for envelope applications; acoustic insulation performance | Cultivated on agricultural/lignocellulosic residues; biodegradable/compostable. | [68,69,70] | Synthetic insulators such as polyurethane (PU), expanded polystyrene (EPS), and extruded polystyrene (XPS) | Good thermal insulation (low thermal conductivity, widely used in buildings). | Non-renewable; recycling challenges (especially PU); additives with toxicological concerns (e.g., Hexabromocyclododecane (HBCD) in EPS/XPS); higher environmental impact (XPS is ranked among the least favorable materials in life cycle assessment (LCA)). | [71,72,73,74] |
Cellulose and derivatives | Good thermal and acoustic insulation; applicable as panels or cavity fillers; acceptable fire resistance when fire-retardant additives are used. | Renewable and biodegradable; enable valorization of lignocellulosic residues; reduce carbon footprint compared with synthetic insulators; contribute to improved energy efficiency in buildings. | [75,76,77] | Conventional insulators (mineral wool, fiberglass) | Good thermal efficiency, proven durability, and regulatory standardization. | Significant environmental impact during production (high energy consumption in melting furnaces); occupational risks during installation; non-biodegradable with problematic end-of-life disposal. | [78,79] |
Technology | Applications | Key Benefits | Typical Integrations | Challenges and Limitations | References |
---|---|---|---|---|---|
Building Information Modeling (BIM) | Integrated planning, clash detection, material quantification, simulation of design alternatives; in operation and maintenance (O&M): asset inventory, maintenance management, as-built updating. | Reduction of conflicts and rework; single database; support for life cycle analysis; improvement of costs and schedules. | BIM–LCA (IFC, Industry Foundation Classes); BIM–FM (Facility Management)/CMMS (Computerized Maintenance Management System); BIM–IoT. | Interoperability and data quality, model updating, organizational maturity, adoption costs. | [93,125,126] |
Digital Twins (DT) | Real-time monitoring, performance simulation, support for predictive maintenance, what-if visualization and analysis. | Virtual twin connected to IoT data; performance-based decisions; traceability; greater asset resilience. | DT–BIM, DT–IoT, DT for bridges with online updating. | Integration of heterogeneous sources, data governance, scalability, cybersecurity, standardization. | [15,108,127] |
Artificial Intelligence (AI), Sensors, and Internet of Things (IoT) | Structural Health Monitoring (SHM) (vibrations, deformations, ultrasound); anomaly detection, damage diagnosis, service life prediction. | Automated diagnostics; reduced inspections; predictive maintenance; operation in remote environments with AIoT. | AI/ML (machine learning) with SHM signals; PZT for concrete properties; AIoT for distributed processing; integration with DT. | Thermal drift and sensor noise, data curation, energy availability at the edge, field validation. | [112,113,115,128,129] |
3D Printing and On-Site Automation | Additive manufacturing of elements; automated mixing; in-process quality control; 3D-printed housing and bridges. | Reduced waste and timelines; complex geometries; CO2 reduction; digital traceability of the process. | 3DCP (3D Concrete Printing) –DT, automated mixing, connection with BIM. | Industrial scalability, material formulations, regulations, dimensional and mechanical control. | [113,119,121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligarda-Samanez, C.A.; Huamán-Carrión, M.L.; Cabel-Moscoso, D.J.; Marlene Muñoz Sáenz, D.; Antonio Martinez Hernandez, J.; Garcia-Espinoza, A.J.; Fermín Calderón Huamaní, D.; Carrasco-Badajoz, C.; Pino Cordero, D.; Sucari-León, R.; et al. Technological Innovations in Sustainable Civil Engineering: Advanced Materials, Resilient Design, and Digital Tools. Sustainability 2025, 17, 8741. https://doi.org/10.3390/su17198741
Ligarda-Samanez CA, Huamán-Carrión ML, Cabel-Moscoso DJ, Marlene Muñoz Sáenz D, Antonio Martinez Hernandez J, Garcia-Espinoza AJ, Fermín Calderón Huamaní D, Carrasco-Badajoz C, Pino Cordero D, Sucari-León R, et al. Technological Innovations in Sustainable Civil Engineering: Advanced Materials, Resilient Design, and Digital Tools. Sustainability. 2025; 17(19):8741. https://doi.org/10.3390/su17198741
Chicago/Turabian StyleLigarda-Samanez, Carlos A., Mary L. Huamán-Carrión, Domingo J. Cabel-Moscoso, Doris Marlene Muñoz Sáenz, Jaime Antonio Martinez Hernandez, Antonina J. Garcia-Espinoza, Dante Fermín Calderón Huamaní, Carlos Carrasco-Badajoz, Darwin Pino Cordero, Reynaldo Sucari-León, and et al. 2025. "Technological Innovations in Sustainable Civil Engineering: Advanced Materials, Resilient Design, and Digital Tools" Sustainability 17, no. 19: 8741. https://doi.org/10.3390/su17198741
APA StyleLigarda-Samanez, C. A., Huamán-Carrión, M. L., Cabel-Moscoso, D. J., Marlene Muñoz Sáenz, D., Antonio Martinez Hernandez, J., Garcia-Espinoza, A. J., Fermín Calderón Huamaní, D., Carrasco-Badajoz, C., Pino Cordero, D., Sucari-León, R., & Aroquipa-Durán, Y. (2025). Technological Innovations in Sustainable Civil Engineering: Advanced Materials, Resilient Design, and Digital Tools. Sustainability, 17(19), 8741. https://doi.org/10.3390/su17198741