Recent Progress in Sustainable Recycling of Waste Acrylonitrile–Butadiene–Styrene (ABS) Plastics
Abstract
1. Introduction
2. Recycling of ABS Plastics
2.1. Chemical Depolymerization
2.2. Thermo-Chemical Oxidation
- Reduced content of carbon–carbon double bonds in the PB segments due to oxidative cleavage and addition reactions.
- Formation of oxygenated functional groups (e.g., carbonyl, hydroxyl, and epoxy groups) along the polymer backbone.
- Increased cross-linking within the rubber phase through radical recombination and addition reactions between unsaturated sites.
2.3. Triboelectrostatic Separation and Electric Charge
2.4. Dissolved Air Flotation
2.5. Dissolution-Based Recycling
2.6. Magnetic Levitation of ABS Plastics
2.7. Gasification of ABS Plastics
2.8. Pyrolysis of ABS Plastics
2.9. Plasma Recycling of ABS
2.10. Boiling Treatment, Microwave Treatment, Fenton Reaction, and Froth Flotation
2.11. Mechanical Recycling
3. Compatibility of Recycled ABS Plastics
3.1. ABS and Polypropylene (PP)
3.2. ABS and Polystyrene (PS)
3.3. ABS and Polymethylmethacrylate (PMMA)
3.4. ABS and Polyvinyl Chloride (PVC)
3.5. ABS and Polycarbonate (PC)
3.6. ABS and Nylon 6
4. Conclusions and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Plastic Market Size, Share & Trends Analysis (2024–2030). 2023. Available online: https://www.grandviewresearch.com/industry-analysis/global-plastics-market (accessed on 5 August 2025).
- Deshmukh, D.; Kulkarni, H.; Srivats, D.S.; Bhanushali, S.; More, A.P. Recycling of acrylonitrile butadiene styrene (ABS): A review. Polym. Bull. 2024, 81, 1–38. [Google Scholar] [CrossRef]
- Verified Market Reports. ABS Plastic Recycling Market Insights (2023–2033). 2025. Available online: https://www.verifiedmarketreports.com/product/abs-plastic-recycling-market/?utm_source=chatgpt.com/ (accessed on 5 August 2025).
- Grand View Research. Recycled Engineering Plastics Market Size, Share & Trends Analysis (2025–2030). 2025. Available online: https://www.grandviewresearch.com/industry-analysis/recycled-engineering-plastics-market-report (accessed on 5 August 2025).
- Dataintelo Consulting. ABS Plastic Recycling Market (2025–2033). 2025. Available online: https://dataintelo.com/report/abs-plastic-recycling-market?utm_source=chatgpt.com (accessed on 5 August 2025).
- PW Consulting Chemical & Energy Research Center. Acrylonitrile Butadiene Styrene (ABS) Recyclates Market. 2025. Available online: https://pmarketresearch.com/chemi/acrylonitrile-butadiene-styrene-abs-recyclates-market/?utm_source=chatgpt.com (accessed on 5 August 2025).
- Universite Cote d’Azur (France). Paving the Way for an ABS Recycling Revolution in the EU. 2025. Available online: https://cordis.europa.eu/project/id/101058636/reporting (accessed on 25 July 2025).
- European Commission. Directive (EU) 2018/852 of the European Parliament and of the Council of 30 May 2018 Amending Directive 94/62/EC on Packaging and Packaging Waste. 2018. Available online: https://eur-lex.europa.eu/eli/dir/2018/852/oj (accessed on 5 August 2025).
- Torkelis, A.; Dvarionienė, J.; Denafas, G. The Factors Influencing the Recycling of Plastic and Composite Packaging Waste. Sustainability 2024, 16, 9515. [Google Scholar] [CrossRef]
- van der Marel, E.R. Trading Plastic Waste in a Global Economy: Soundly Regulated by the Basel Convention? J. Environ. Law 2022, 34, 477–497. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, S.; Xu, W.; Chen, C.; Chen, A.; Lu, R.; Jing, Q.; Liu, J. Exploring long-term global environmental impacts of chlorinated paraffins (CPs) in waste: Implications for the Stockholm and Basel Conventions and the global plastic treaty. Environ. Int. 2024, 185, 108527. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ward, H.; Lin, H.X.; Tukker, A. Shift to intra-EU-OECD trade enhanced environmental benefits after Basel Convention Plastic Waste Amendments. Resour. Conserv. Recycl. 2025, 223, 108527. [Google Scholar] [CrossRef]
- Hui, Z.; Haider, A.; Khan, A. International trade and plastic waste in oceans: Legal and policy challenges. Front. Mar. Sci. 2025, 12, 1627829. [Google Scholar] [CrossRef]
- Eckert, S.; Karassin, O.; Steinebach, Y. A policy portfolio approach to plastics throughout their life cycle: Supranational and national regulation in the European Union. Environ. Policy Gov. 2024, 34, 427–441. [Google Scholar] [CrossRef]
- Andrady, A.L.; Neal, M.A. Applications and societal benefits of plastics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1977–1984. [Google Scholar] [CrossRef]
- Choi, W.H.; Pae, K.P.; Kim, N.S. Feasibility study of closed-loop recycling for plastic generated from waste electrical and electronic equipment (WEEE) in South Korea. Energies 2023, 16, 6358. [Google Scholar] [CrossRef]
- Musa, A.; Jaseer, E.A.; Barman, S.; Garcia, N. Review on Catalytic Depolymerization of Polyolefin Waste by Hydrogenolysis: State-of-the-Art and Outlook. Energy Fuels 2024, 38, 1676–1691. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Walker, R.; Korey, M.; Hubbard, A.M.; Clarkson, C.M.; Corum, T.; Smith, T.; Hershey, C.J.; Lindahl, J.; Ozcan, S.; Duty, C. Recycling of CF-ABS machining waste for large format additive manufacturing. Compos. Part B Eng. 2024, 275, 111291. [Google Scholar] [CrossRef]
- Arends, D.; Schlummer, M.; Mäurer, A. Removal of inorganic colour pigments from acrylonitrile butadiene styrene by dissolution-based recycling. J. Mater. Cycles Waste Manag. 2012, 14, 85–93. [Google Scholar] [CrossRef]
- Anderson, L.; Yu, E.; Chen, W.-T. Chemical Recycling of Mixed Plastics in Electronic Waste Using Solvent-Based Processing. Processes 2022, 10, 66. [Google Scholar] [CrossRef]
- Manish; Gurjar, D.; Sharma, S.; Akash; Sarkar, M. A Review on testing methods of recycled Acrylonitrile Butadiene-Styrene. Mater. Today Proc. 2018, 5, 28296–28304. [Google Scholar] [CrossRef]
- García, M.d.G.T.; Schlatter, M.; Cabrera, F.M.; Manzanares, J.T.; Hanafi, I. Recycling of Acrylonitrile–Butadiene–Styrene Using Injection Moulding Machine. Procedia Technol. 2016, 22, 399–406. [Google Scholar] [CrossRef]
- Lu, T.; Chen, W.-T. Material recycling of Acrylonitrile Butadiene Styrene (ABS) from toy waste using density separation and safer solvents. Resour. Conserv. Recycl. 2023, 197, 107090. [Google Scholar] [CrossRef]
- Tiwari, R.; Azad, N.; Dutta, D.; Yadav, B.R.; Kumar, S. A critical review and future perspective of plastic waste recycling. Sci. Total Environ. 2023, 881, 163433. [Google Scholar] [CrossRef] [PubMed]
- Bertin, M.-P.; Marin, G.; Montfort, J.-P. Viscoelastic properties of acrylonitrile-butadiene-styrene (ABS) polymers in the molten state. Polym. Eng. Sci. 1995, 35, 1394–1406. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, C.; Zhang, H.; Zou, J.; Zhou, F.; Jin, H. The resource utilization of ABS plastic waste with subcritical and supercritical water treatment. Int. J. Hydrogen Energy 2019, 44, 15758–15765. [Google Scholar] [CrossRef]
- Mordor Intelligence. Acrylonitrile Butadiene Styrene Market Size & Share Analysis—Growth Trends & Forecasts (2025–2030). 2025. Available online: https://www.mordorintelligence.com/industry-reports/acrylonitrile-butadiene-styrene-abs-resin-market (accessed on 18 July 2025).
- Clark, R.A.; Shaver, M.P. Depolymerization within a Circular Plastics System. Chem. Rev. 2024, 124, 2617–2650. [Google Scholar] [CrossRef]
- Miao, Y.; von Jouanne, A.; Yokochi, A. Current technologies in depolymerization process and the road ahead. Polymers 2021, 13, 449. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, D.; Czyżewski, P.; Sykutera, D.; Bieliński, M. Recycling of ABS operating elements obtained from industry 3D printing machines. Polimery 2021, 64, 803–810. [Google Scholar] [CrossRef]
- Freymond, C.; Mackré-Delannoy, X.; Guinault, A.; Charbuillet, C.; Fayolle, B. Thermal oxidation of acrylonitrile-butadiene-styrene: Origin of the ductile/brittle transition. Polym. Degrad. Stab. 2022, 206, 110186. [Google Scholar] [CrossRef]
- Alassali, A.; Barouta, D.; Tirion, H.; Moldt, Y.; Kuchta, K. Towards a high quality recycling of plastics from waste electrical and electronic equipment through separation of contaminated fractions. J. Hazard. Mater. 2020, 387, 121741. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Oguchi, M.; Sakanakura, H.; Terazono, A. Toxic metals in WEEE: Characterization and substance flow analysis in waste treatment processes. Sci. Total Environ. 2013, 463–464, 1124–1132. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, D.; Wei, N. Enzyme discovery and engineering for sustainable plastic recycling. Trends Biotechnol. 2022, 40, 22–37. [Google Scholar] [CrossRef]
- Aguiar, M.I.S.; Sousa, A.F.; Teixeira, G.; Tavares, A.P.M.; Ferreira, A.M.; Coutinho, J.A.P. Enhancing plastic waste recycling: Evaluating the impact of additives on the enzymatic polymer degradation. Catal. Today 2024, 429, 114492. [Google Scholar] [CrossRef]
- Orlando, M.; Molla, G.; Castellani, P.; Pirillo, V.; Torretta, V.; Ferronato, N. Microbial Enzyme Biotechnology to Reach Plastic Waste Circularity: Current Status, Problems and Perspectives. Int. J. Mol. Sci. 2023, 24, 3877. [Google Scholar] [CrossRef]
- Shanker, R.; Khan, D.; Hossain, R.; Islam, M.T.; Locock, K.; Ghose, A.; Sahajwalla, V.; Schandl, H.; Dhodapkar, R. Plastic waste recycling: Existing Indian scenario and future opportunities. Int. J. Environ. Sci. Technol. 2023, 20, 5895–5912. [Google Scholar] [CrossRef]
- Li, A.; Wu, L.; Cui, H.; Song, Y.; Zhang, X.; Li, X. Unlocking a Sustainable Future for Plastics: A Chemical-Enzymatic Pathway for Efficient Conversion of Mixed Waste to MHET and Energy-Saving PET Recycling. ChemSusChem 2024, 17, e202301612. [Google Scholar] [CrossRef]
- Rorrer, J.E.; Troyano-Valls, C.; Beckham, G.T.; Román-Leshkov, Y. Hydrogenolysis of Polypropylene and Mixed Polyolefin Plastic Waste over Ru/C to Produce Liquid Alkanes. ACS Sustain. Chem. Eng. 2021, 9, 11661–11666. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, Z.; Zhang, X.; Li, T.; Li, Y.; Chen, X.; Wang, K. Catalytic hydrogenolysis of plastic to liquid hydrocarbons over a nickel-based catalyst. Environ. Pollut. 2022, 313, 120154. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Y.; Yuan, S.; Deng, J.; Yang, J.; Yan, J.; Yu, S.; Xu, B.; Ma, D. Complete hydrogenolysis of mixed plastic wastes. Nat. Chem. Eng. 2024, 1, 376–384. [Google Scholar] [CrossRef]
- Kumar, S.; Sajwan, D.; Sharma, D.; Krishnan, V. Reductive Upcycling of Polyolefins, Polyesters and Mixed Plastic Wastes to Valuable Chemicals: Bridging Chemical Catalysis With Plastic Waste Management. Adv. Sustain. Syst. 2025, 9, 2500003. [Google Scholar] [CrossRef]
- Li, H.; Aguirre-Villegas, H.A.; Allen, R.D.; Bai, X.; Benson, C.H.; Beckham, G.T.; Bradshaw, S.L.; Brown, J.L.; Brown, R.C.; Cecon, V.S.; et al. Expanding plastics recycling technologies: Chemical aspects, technology status and challenges. Green Chem. 2022, 24, 8899–9002. [Google Scholar] [CrossRef]
- Karahaliou, E.K.; Tarantili, P.A. Stability of ABS compounds subjected to repeated cycles of extrusion processing. Polym. Eng. Sci. 2009, 49, 2269–2275. [Google Scholar] [CrossRef]
- de Sousa Filho, V.A.; de Azevedo, A.C.S.; de Oliveira, R.; Bonfim, R.L.P.; da Silva Amaral, A.K.; da Cunha, R.B.; Agrawal, P.; Cunha, C.T.C.; de Figueiredo Brito, G.; de Mélo, T.J.A. Properties of Recycled ABS and HIPS Polymers From WEEE and Their Blends With Virgin ABS Prepared by 3D Printing and Compression Molding. J. Appl. Polym. Sci. 2025, 142, e56797. [Google Scholar] [CrossRef]
- Liu, X.; Boldizar, A.; Rigdahl, M.; Bertilsson, H. Recycling of blends of acrylonitrile–butadiene–styrene (ABS) and polyamide. J. Appl. Polym. Sci. 2002, 86, 2535–2543. [Google Scholar] [CrossRef]
- Korey, M.; Rencheck, M.L.; Tekinalp, H.; Wasti, S.; Wang, P.; Bhagia, S.; Walker, R.; Smith, T.; Zhao, X.; Lamm, M.E.; et al. Recycling polymer composite granulate/regrind using big area additive manufacturing. Compos. Part B Eng. 2023, 256, 110652. [Google Scholar] [CrossRef]
- Pelto, J.; Barreto, C.; Anwar, H.; Strobl, L.; Schlummer, M. Compatibilized PC/ABS blends from solvent recycled PC and ABS polymers from electronic equipment waste. Polym. Test. 2023, 120, 107969. [Google Scholar] [CrossRef]
- Mishra, V.; Negi, S.; Kar, S. FDM-based additive manufacturing of recycled thermoplastics and associated composites. J. Mater. Cycles Waste Manag. 2023, 25, 758–784. [Google Scholar] [CrossRef]
- Hirschberg, V.; Rodrigue, D. Recycling of polyamides: Processes and conditions. J. Polym. Sci. 2023, 61, 1937–1958. [Google Scholar] [CrossRef]
- Balart, R.; López, J.; García, D.; Salvador, M.D. Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. Eur. Polym. J. 2005, 41, 2150–2160. [Google Scholar] [CrossRef]
- Barthes, M.L.; Mantaux, O.; Pedros, M. Recycling of aged ABS from real WEEE through ABS/PC blends in the ABS-rich compositions. Adv. Polym. Technol. 2012, 31, 343–353. [Google Scholar] [CrossRef]
- Bärwinkel, S.; Seidel, A.; Hobeika, S. Morphology formation in PC/ABS blends during thermal processing and the effect of the viscosity ratio of blend partners. Materials 2016, 9, 659. [Google Scholar] [CrossRef]
- Vollmer, I.; Jenks, M.J.F.; Roelands, M.C.P.; White, R.J.; van Harmelen, T.; de Wild, P.; van der Laan, G.P.; Meirer, F.; Keurentjes, J.T.F.; Weckhuysen, B.M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem. Int. Ed. 2020, 59, 15402–15423. [Google Scholar] [CrossRef]
- Merrington, A. 9—Recycling of Plastics. In Applied Plastics Engineering Handbook, 3rd ed.; Kutz, M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2024; pp. 191–217. [Google Scholar]
- Kumar, R.; Sharma, H.; Saran, C.; Tripathy, T.S.; Sangwan, K.S.; Herrmann, C. A Comparative Study on the Life Cycle Assessment of a 3D Printed Product with PLA, ABS & PETG Materials. Procedia CIRP 2022, 107, 15–20. [Google Scholar] [CrossRef]
- Spicer, A.J.; Brandolese, A.; Dove, A.P. Selective and Sequential Catalytic Chemical Depolymerization and Upcycling of Mixed Plastics. ACS Macro Lett. 2024, 13, 189–194. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Additive manufacturing for sustainability and circular economy: Needs, challenges, and opportunities for 3D printing of recycled polymeric waste. Mater. Today Sustain. 2023, 24, 100529. [Google Scholar] [CrossRef]
- Mishra, V.; Ror, C.K.; Negi, S.; Kar, S.; Borah, L.N. Development of sustainable 3D printing filaments using recycled/virgin ABS blends: Processing and characterization. Polym. Eng. Sci. 2023, 63, 1890–1899. [Google Scholar] [CrossRef]
- Kuram, E.; Ozcelik, B.; Kocoglu, H.; Ayas, H.; Dogan, M. UV and outdoor weathering of glass fiber reinforced polycarbonate/acrylonitrile-butadiene-styrene composites and recycling of aged composites. J. Thermoplast. Compos. Mater. 2025, 38, 1427–1464. [Google Scholar] [CrossRef]
- Marquez, C.; Aerts, A.; Parida, D.; Glassee, I.; Mitta, H.; Li, L.; Van Geem, K.M.; Vanbroekhoven, K.; Feghali, E.; Elst, K. Monomer recycling of virgin polycarbonate (PC), end-of-life PC and PC-ABS blends by Ni-catalyzed reductive depolymerization. Green Chem. 2025, 27, 5709–5714. [Google Scholar] [CrossRef]
- Salari, D.; Ranjbar, H. Study on the recycling of ABS resins: Simulation of reprocessing and thermo-oxidation. Iran. Polym. J. 2008, 17, 599–610. [Google Scholar]
- Vilaplana, F.; Ribes-Greus, A.; Karlsson, S. Degradation of recycled high-impact polystyrene. Simulation by reprocessing and thermo-oxidation. Polym. Degrad. Stab. 2006, 91, 2163–2170. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M. Triboelectrostatic separation for PP and ABS plastics in end of life passenger vehicles. J. Mater. Cycles Waste Manag. 2017, 19, 884–897. [Google Scholar] [CrossRef]
- Park, C.H.; Park, J.K.; Jeon, H.S.; Chun, B.C. Triboelectric series and charging properties of plastics using the designed vertical-reciprocation charger. J. Electrost. 2008, 66, 578–583. [Google Scholar] [CrossRef]
- Dodbiba, G.; Shibayama, A.; Miyazaki, T.; Fujita, T. Triboelectrostatic Separation of ABS, PS and PP Plastic Mixture. Mater. Trans. 2003, 44, 161–166. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Z.; Bai, X.; Wang, H.; Zhang, H.; Hao, J.; Wang, C. A review of the research on triboelectric separation technology. Miner. Eng. 2024, 216, 108901. [Google Scholar] [CrossRef]
- He, X.; Zhong, Z.; Ouyang, Y.; Wang, J. Investigation of tribo-electrostatic separation mechanism for thermoplastics in e-waste based on functional group distribution and surface potential. Sep. Purif. Technol. 2025, 362, 131764. [Google Scholar] [CrossRef]
- Dani, C.; Achouri, I.E.; Zeghloul, T.; Aouimeur, D.; Lungu, M.; Dascalescu, L. Triboelectric Charging and Electrostatic Separation of Granular Plastic Wastes Exposed to Long-Term Action of High Levels of Ambient Humidity. IEEE Trans. Ind. Appl. 2025, 61, 1194–1201. [Google Scholar] [CrossRef]
- Achouri, I.-E.; Csaba, D.; Thami, Z.; Mihai, L.; Dascalescu, L. Effect of ambient humidity on the tribo-electrostatic separation of granular plastic wastes. Part. Sci. Technol. 2024, 42, 908–914. [Google Scholar] [CrossRef]
- Achouri, I.E.; Richard, G.; Zeghloul, T.; Medles, K.; Dascalescu, L. New Vibrating-Table-Type Tribo-Electrostatic Separator for Selective Sorting of Granular Plastic Wastes. IEEE Trans. Ind. Appl. 2024, 60, 3537–3542. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Bai, Y. Application of dissolved air flotation on separation of waste plastics ABS and PS. Waste Manag. 2012, 32, 1297–1305. [Google Scholar] [CrossRef]
- Fagkaew, P.; Chawaloesphonsiya, N.; Bun, S.; Painmanakul, P. Improving the Separation of PS and ABS Plastics Using Modified Induced Air Flotation with a Mixing Device. Recycling 2022, 7, 44. [Google Scholar] [CrossRef]
- Wei, M.; Yang, T.; An, L.; Meng, X.; Tan, J.; Zhang, X. Kinetic, artificial neural network, and statistical modeling to optimize the parameters of the air flotation process to remove latex suspended solids in ABS wastewater. J. Water Process Eng. 2023, 56, 104417. [Google Scholar] [CrossRef]
- Thanh Truc, N.T.; Lee, B.-K. Sustainable and Selective Separation of PVC and ABS from a WEEE Plastic Mixture Using Microwave and/or Mild-Heat Treatment with Froth Flotation. Environ. Sci. Technol. 2016, 50, 10580–10587. [Google Scholar] [CrossRef]
- TNO Insights. Application of Dissolution to Recycle ABS Plastics in a Circular Way. 8 March 2024. Available online: https://www.tno.nl/en/newsroom/insights/2024/03/recycling-abs-plastics-with-dissolution/ (accessed on 1 March 2025).
- Arostegui, A.; Sarrionandia, M.; Aurrekoetxea, J.; Urrutibeascoa, I. Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile–butadiene–styrene copolymer. Polym. Degrad. Stab. 2006, 91, 2768–2774. [Google Scholar] [CrossRef]
- Chen, P.; Chiang, C.H. Taguchi Method for Investigation of Ultrasonication-Assisted Dissolution of Acrylonitrile Butadiene Styrene (ABS) Rod Enclosed Within Polydimethylsiloxane (PDMS) Bulk. IEEE Access 2020, 8, 114910–114915. [Google Scholar] [CrossRef]
- Demircali, A.A.; Yilmaz, D.; Yilmaz, A.; Keskin, O.; Keshavarz, M.; Uvet, H. Enhancing mechanical properties and surface quality of FDM-printed ABS: A comprehensive study on cold acetone vapor treatment. Int. J. Adv. Manuf. Technol. 2024, 130, 4027–4039. [Google Scholar] [CrossRef]
- Titone, V.; Botta, L.; La Mantia, F.P. Mechanical Recycling of New and Challenging Polymer Systems: A Brief Overview. Macromol. Mater. Eng. 2025, 310, 2400275. [Google Scholar] [CrossRef]
- Chen, W.-T.; Nien-hwa, L.W.; Jin, K. Method of Converting Plastic Waste into Useful Stock. U.S. Patent No. 10,894,870, 19 January 2021. [Google Scholar]
- Achilias, D.S.; Giannoulis, A.; Papageorgiou, G.Z. Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique. Polym. Bull. 2009, 63, 449–465. [Google Scholar] [CrossRef]
- Weeden, G.S., Jr.; Soepriatna, N.H.; Wang, N.-H.L. Method for Efficient Recovery of High-Purity Polycarbonates from Electronic Waste. Environ. Sci. Technol. 2015, 49, 2425–2433. [Google Scholar] [CrossRef]
- Cervantes-Reyes, A.; Núñez-Pineda, A.; Barrera-Díaz, C.; Varela-Guerrero, V.; Martínez-Barrera, G.; Cuevas-Yañez, E. Solvent effect in the polyethylene recovery from multilayer postconsumer aseptic packaging. Waste Manag. 2015, 38, 61–64. [Google Scholar] [CrossRef]
- García, M.T.; Duque, G.; Gracia, I.; de Lucas, A.; Rodríguez, J.F. Recycling extruded polystyrene by dissolution with suitable solvents. J. Mater. Cycles Waste Manag. 2009, 11, 2–5. [Google Scholar] [CrossRef]
- Mumladze, T.; Yousef, S.; Tatariants, M.; Kriūkienė, R.; Makarevicius, V.; Lukošiūtė, S.-I.; Bendikiene, R.; Denafas, G. Sustainable approach to recycling of multilayer flexible packaging using switchable hydrophilicity solvents. Green Chem. 2018, 20, 3604–3618. [Google Scholar] [CrossRef]
- Walker, T.W.; Frelka, N.; Shen, Z.; Chew, A.K.; Banick, J.; Grey, S.; Kim, M.S.; Dumesic, J.A.; Van Lehn, R.C.; Huber, G.W. Recycling of multilayer plastic packaging materials by solvent-targeted recovery and precipitation. Sci. Adv. 2020, 6, eaba7599. [Google Scholar] [CrossRef]
- Kim, T.G.; Srivastava, R.R.; Jun, M.; Kim, M.-S.; Lee, J.-C. Hydrometallurgical recycling of surface-coated metals from automobile-discarded ABS plastic waste. Waste Manag. 2018, 80, 414–422. [Google Scholar] [CrossRef]
- Yuan, W.; Teng, C.; Zhao, Y.; Huang, Q.; Wang, X.; Cai, K.; Song, Q.; Zhang, L.; Zhu, J.; Xu, L.; et al. Efficient recycling of surface-plated metals from ABS plastic waste via ammonium persulfate system. Sep. Purif. Technol. 2023, 326, 124796. [Google Scholar] [CrossRef]
- Balogun, A.F.; Baba, A.A.; Olaoluwa, D.T. Selective Extraction of Copper from Ammonia-Ammonium Sulphate Solution Using a Mixture of LIX 84-I and TBP: Parameter Determination. Mater. Circ. Econ. 2025, 7, 13. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Lu, H.; Huang, Z. Recycling of phosphorus-containing plastic based on the dual effects of switchable hydrophilicity solvents. Chemosphere 2020, 259, 127402. [Google Scholar] [CrossRef]
- Zhao, P.; Xie, J.; Gu, F.; Sharmin, N.; Hall, P.; Fu, J. Separation of mixed waste plastics via magnetic levitation. Waste Manag. 2018, 76, 46–54. [Google Scholar] [CrossRef]
- Xie, J.; Lin, W.; Lyu, C.; Zhang, L.; Zhao, P.; Li, J. Total separation of multi-plastic wastes using magnetic levitation with adjustable sensitivity. Sep. Purif. Technol. 2025, 357, 130118. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, P.; Zhang, J.; Zhou, H.; Fu, J.; Turng, L.-S. Characterization of polymer materials using magnetic levitation. J. Mater. Res. 2020, 35, 1182–1189. [Google Scholar] [CrossRef]
- Xia, L.; Liu, R.; Liu, J.; Zhu, X.; Ding, A.; Cao, Q. Radial Magnetic Levitation and Its Application to Density Measurement, Separation, and Detection of Microplastics. Anal. Chem. 2023, 95, 8660–8667. [Google Scholar] [CrossRef]
- Bai, B.; Jin, H.; Zhu, S.; Wu, P.; Fan, C.; Sun, J. Experimental investigation on in-situ hydrogenation induced gasification characteristics of acrylonitrile butadiene styrene (ABS) microplastics in supercritical water. Fuel Process Technol. 2019, 192, 170–178. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Brown, A.B.; Mudhoo, A.; Martinez, J.; Timko, M.T.; Rostagno, M.A.; Forster-Carneiro, T. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: A critical review. Biofuel Res. J. 2017, 4, 611–626. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Yu, J. Comparison of the pyrolysis behavior of PC, ABS and PC/ABS. J. Anal. Appl. Pyrolysis 2024, 183, 106774. [Google Scholar] [CrossRef]
- Areeprasert, C.; Khaobang, C. Pyrolysis and catalytic reforming of ABS/PC and PCB using biochar and e-waste char as alternative green catalysts for oil and metal recovery. Fuel Process Technol. 2018, 182, 26–36. [Google Scholar] [CrossRef]
- Liu, G.; Liao, Y.; Ma, X. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR. Waste Manag. 2017, 61, 315–326. [Google Scholar] [CrossRef]
- Szabo, E.; Olah, M.; Ronkay, F.; Miskolczi, N.; Blazso, M. Characterization of the liquid product recovered through pyrolysis of PMMA–ABS waste. J. Anal. Appl. Pyrolysis 2011, 92, 19–24. [Google Scholar] [CrossRef]
- Singh, G.; Brar, G.S.; Singh, R. On successive recycling of acrylonitrile butadiene styrene- melamine formaldehyde composite for sensing applications. J. Thermoplast. Compos. Mater. 2025, 38, 08927057251314438. [Google Scholar] [CrossRef]
- Rathsack, P.-H.; Scheithauer, D.; Kleeberg, J.; Gräbner, M. Chemical recycling of PC/ABS-blends by pyrolysis. J. Anal. Appl. Pyrolysis 2025, 188, 107047. [Google Scholar] [CrossRef]
- Chen, S.C.; Liao, W.H.; Hsieh, M.W. Influence of recycled ABS added to virgin polymers on the physical, mechanical properties and molding characteristics. Polym. Plast. Technol. Eng. 2011, 50, 306–311. [Google Scholar] [CrossRef]
- Sathish, T.; Sabarirajan, N.; Ravichandran, S.; Moorthy, G.M.; Dinesh Kumar, S. Novel study on improvement of plastics properties by blending of waste micro plastics into ABS plastics. Chemosphere 2022, 303, 134997. [Google Scholar] [CrossRef]
- Nam, Y.; Lee, S.; Jee, S.M.; Bang, J.; Kim, J.H.; Park, J.H. High efficiency upcycling of post-consumer acrylonitrile-butadiene-styrene via plasma-assisted mechanochemistry. Chem. Eng. J. 2024, 480, 147960. [Google Scholar] [CrossRef]
- Dorigato, A. Recycling of polymer blends. Adv. Ind. Eng. Polym. Res. 2021, 4, 53–69. [Google Scholar] [CrossRef]
- Mallick, R.; Vairakannu, P. Experimental investigation of acrylonitrile butadiene styrene plastics plasma gasification. J. Environ. Manag. 2023, 345, 118655. [Google Scholar] [CrossRef]
- Kusano, R.; Kusano, Y. Applications of Plasma Technologies in Recycling Processes. Materials 2024, 17, 1687. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, H.; Bao-xin, W.; Liu, Q. Boiling treatment of ABS and PS plastics for flotation separation. Waste Manag. 2014, 34, 1206–1210. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, H.; Wang, C. Flotation separation of acrylonitrile-butadiene-styrene and polystyrene in WEEE based on oxidation of active sites. Miner. Eng. 2020, 146, 106131. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Wang, C. Surface modification and selective flotation of waste plastics for effective recycling—A review. Sep. Purif. Technol. 2019, 226, 75–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, H.; Wang, C. Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: Process and mechanism. J. Hazard. Mater. 2020, 389, 121918. [Google Scholar] [CrossRef]
- Pakbar, H.; Ostad Movahed, S.; Jourabchi, S. The effect of pre-microwave irradiation on the floatation of polystyrene, polyethylene terephthalate, and polyvinylchloride using numerous traditional depressants. Prog. Rubber Plast. Recycl. Technol. 2023, 39, 307–324. [Google Scholar] [CrossRef]
- Utimura, S.K.; Chaves, A.P.; Tenório, J.A.S.; Espinosa, D.C.R. Selecting chemicals for separation of ABS and HIPS in WEEE by froth flotation. Polimeros 2019, 29, e2019017. [Google Scholar] [CrossRef]
- Fraunholcz, N. Separation of waste plastics by froth flotation—A review, part I. Miner. Eng. 2004, 17, 261–268. [Google Scholar] [CrossRef]
- Pascoe, R.D. The use of selective depressants for the separation of ABS and HIPS by froth flotation. Miner. Eng. 2005, 18, 233–237. [Google Scholar] [CrossRef]
- Wang, J.-c.; Wang, H.; Huang, L.-l.; Wang, C.-q. Surface treatment with Fenton for separation of acrylonitrile-butadiene-styrene and polyvinylchloride waste plastics by flotation. Waste Manag. 2017, 67, 20–26. [Google Scholar] [CrossRef]
- Chow, C.-F.; Wong, W.-L.; Chan, C.-W.; Chan, C.-S. Converting inert plastic waste into energetic materials: A study on the light-accelerated decomposition of plastic waste with the Fenton reaction. Waste Manag. 2018, 75, 174–180. [Google Scholar] [CrossRef]
- Li, W.; Li, Y. Selective flotation separation of polycarbonate from plastic mixtures based on Fenton treatment combined with ultrasonic. J. Mater. Cycles Waste Manag. 2022, 24, 917–926. [Google Scholar] [CrossRef]
- Bule Možar, K.; Miloloža, M.; Martinjak, V.; Radovanović-Perić, F.; Bafti, A.; Ujević Bošnjak, M.; Markić, M.; Bolanča, T.; Cvetnić, M.; Kučić Grgić, D.; et al. Evaluation of Fenton, Photo-Fenton and Fenton-like Processes in Degradation of PE, PP, and PVC Microplastics. Water 2024, 16, 673. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J.; Jin, H.; Guo, L. Current research progress of physical and biological methods for disposing waste plastics. J. Clean. Prod. 2023, 408, 137199. [Google Scholar] [CrossRef]
- Ceretti, D.V.A.; Edeleva, M.; Cardon, L.; D’hooge, D.R. Molecular Pathways for Polymer Degradation during Conventional Processing, Additive Manufacturing, and Mechanical Recycling. Molecules 2023, 28, 2344. [Google Scholar] [CrossRef]
- Babaremu, K.; Adediji, A.; Olumba, N.; Okoya, S.; Akinlabi, E.; Oyinlola, M. Technological Advances in Mechanical Recycling Innovations and Corresponding Impacts on the Circular Economy of Plastics. Environments 2024, 11, 38. [Google Scholar] [CrossRef]
- ÇEtİN, E.; TÜRkan, O.T. Material recycling of acrylonitrile butadiene styrene (ABS) from wiring devices using mechanical recycling. Sustain. Chem. Environ. 2024, 6, 100095. [Google Scholar] [CrossRef]
- Tinz, J.; de Ancos, T.; Rohn, H. Carbon Footprint of Mechanical Recycling of Post-Industrial Plastic Waste: Study of ABS, PA66GF30, PC and POM Regrinds. Waste 2023, 1, 127–139. [Google Scholar] [CrossRef]
- Dong, L.; Zhi, W.; Li, J.; Li, W. Fine Regeneration of ABS and PS Plastics from Waste Refrigerators through Mechanical Physical Recycling. ACS Sustain. Resour. Manag. 2024, 1, 908–915. [Google Scholar] [CrossRef]
- Singh, P.; Katiyar, P.; Singh, H. Impact of compatibilization on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blend: A review. Mater. Today Proc. 2023, 78, 189–197. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Siqueira, D.D.; Araújo, E.M.; do Nascimento, E.P.; da Costa Agra de Melo, J.B. Evaluation of the SEBS copolymer in the compatibility of PP/ABS blends through mechanical, thermal, thermomechanical properties, and morphology. Polym. Adv. Technol. 2022, 33, 111–124. [Google Scholar] [CrossRef]
- Pê, F.R.; dos Santos Filho, E.A.; de Souza, M.F.; Dias, R.A.; Severo, A.M.C.; do Nascimento, E.P.; Wellen, R.M.R.; Araújo, E.M.; Luna, C.B.B. Toward improving the compatibility of the polypropylene (PP)/acrylonitrile–butadiene–styrene (ABS) blends through the incorporation of SEP and SEBS copolymers. Polym. Bull. 2024, 81, 1–28. [Google Scholar] [CrossRef]
- Bonda, S.; Mohanty, S.; Nayak, S.K. Influence of compatibilizer on mechanical, morphological and rheological properties of PP/ABS blends. Iran. Polym. J. 2014, 23, 415–425. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Liao, Q.; Xu, Z. Environmentally-friendly technology for rapid on-line recycling of acrylonitrile-butadiene-styrene, polystyrene and polypropylene using near-infrared spectroscopy. J. Clean. Prod. 2019, 213, 838–844. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Song, J.; He, M.; Song, J.; Xia, K. Recycling of acrylonitrile–butadiene–styrene (ABS) copolymers from waste electrical and electronic equipment (WEEE), through using an epoxy-based chain extender. Polym. Degrad. Stab. 2015, 112, 167–174. [Google Scholar] [CrossRef]
- Brennan, L.B.; Isaac, D.H.; Arnold, J.C. Recycling of acrylonitrile–butadiene–styrene and high-impact polystyrene from waste computer equipment. J. Appl. Polym. Sci. 2002, 86, 572–578. [Google Scholar] [CrossRef]
- Feng, J.; Yuan, Q.; Sun, X. Improving the properties of ABS by blending with PP and using PP-g-PS as a compatibilizer. Polym.-Plast. Technol. Mater. 2021, 60, 798–806. [Google Scholar] [CrossRef]
- Olivera, S.; Muralidhara, H.B.; Venkatesh, K.; Gopalakrishna, K.; Vivek, C.S. Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review. J. Mater. Sci. 2016, 51, 3657–3674. [Google Scholar] [CrossRef]
- Vazquez, Y.V.; Barbosa, S.E. Process Window for Direct Recycling of Acrylonitrile-Butadiene-Styrene and High-Impact Polystyrene from Electrical and Electronic Equipment Waste. Waste Manag. 2017, 59, 403–408. [Google Scholar] [CrossRef]
- Teixeira, F.d.S.M.; Peres, A.C.d.C.; Pacheco, E.B.A.V. Mechanical recycling of acrylonitrile-butadiene-styrene copolymer and high impact polystyrene from waste electrical and electronic equipment to comply with the circular economy. Front. Sustain. 2023, 4, 1203457. [Google Scholar] [CrossRef]
- Liu, X.; Bertilsson, H. Recycling of ABS and ABS/PC blends. J. Appl. Polym. Sci. 1999, 74, 510–515. [Google Scholar] [CrossRef]
- Signoret, C.; Girard, P.; Guen, A.L.; Caro-Bretelle, A.-S.; Lopez-Cuesta, J.-M.; Ienny, P.; Perrin, D. Degradation of Styrenic Plastics during Recycling: Accommodation of PP within ABS after WEEE Plastics Imperfect Sorting. Polymers 2021, 13, 1439. [Google Scholar] [CrossRef]
- Garcia, D.; Balart, R.; Sánchez, L.; López, J. Compatibility of recycled PVC/ABS blends. Effect of previous degradation. Polym. Eng. Sci. 2007, 47, 789–796. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Zhou, C.; Sun, S.-L.; Ren, L.; Ma, X.-L.; Zhang, M.-Y.; Zhang, H.-X. Study of compatibility, morphology structure and mechanical properties of CPVC/ABS blends. J. Appl. Polym. Sci. 2010, 116, 3448–3454. [Google Scholar] [CrossRef]
- Hosseinpour, P.M.; Morshedian, J.; Barikani, M.; Azizi, H.; Pakdaman, A.S. Morphological, mechanical, and rheological studies of PVC/ABS blends in the presence of maleic anhydride. J. Vinyl Addit. Technol. 2010, 16, 127–134. [Google Scholar] [CrossRef]
- Mahanta, D.; Dayanidhi, S.A.; Mohanty, S.; Nayak, S.K. Mechanical, thermal, and morphological properties of recycled polycarbonate/recycled poly(acrylonitrile-butadiene-styrene) blend nanocomposites. Polym. Compos. 2012, 33, 2114–2124. [Google Scholar] [CrossRef]
- Jin, D.W.; Shon, K.H.; Jeong, H.M.; Kim, B.K. Compatibility enhancement of ABS/polycarbonate blends. J. Appl. Polym. Sci. 1998, 69, 533–542. [Google Scholar] [CrossRef]
- Nishino, K.; Shindo, Y.; Takayama, T.; Ito, H. Improvement of impact strength and hydrolytic stability of PC/ABS blend using reactive polymer. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Andrzejewski, J.; Danielak, A.; Piasecki, A.; Islam, A.; Szostak, M. Biocarbon-based sustainable reinforcing system for technical polymers. The structure-properties correlation between polycarbonate (PC) and polybutylene terephthalate (PBT)-based blends containing acrylonitrile-butadiene-styrene (ABS). Sustain. Mater. Technol. 2023, 36, e00612. [Google Scholar] [CrossRef]
- Zhang, B.B.; Chen, Y.; Wang, F.; Hong, R.Y. Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends. Appl. Surf. Sci. 2015, 351, 280–288. [Google Scholar] [CrossRef]
- Murakami, O. Technology for recycling plastic materials. Environ. Technol. Ed. 2001, 96, 6–9. [Google Scholar]
- Rodríguez-Reyna, S.L.; Mata, C.; Díaz-Aguilera, J.H.; Acevedo-Parra, H.R.; Tapia, F. Mechanical properties optimization for PLA, ABS and Nylon + CF manufactured by 3D FDM printing. Mater. Today Commun. 2022, 33, 104774. [Google Scholar] [CrossRef]
- Yankin, A.; Alipov, Y.; Temirgali, A.; Serik, G.; Danenova, S.; Talamona, D.; Perveen, A. Optimization of Printing Parameters to Enhance Tensile Properties of ABS and Nylon Produced by Fused Filament Fabrication. Polymers 2023, 15, 3043. [Google Scholar] [CrossRef]
- Kudva, R.A.; Keskkula, H.; Paul, D.R. Properties of compatibilized nylon 6/ABS blends: Part I. Effect of ABS type. Polymer 2000, 41, 225–237. [Google Scholar] [CrossRef]
- Venkatesh, R.; Jerold John Britto, J.; Amudhan, K.; Anbumalar, V.; Prabhakaran, R.; Thiyanesh Sakthi, R. Experimental investigation of mechanical properties on CF reinforced PLA, ABS and Nylon composite part. Mater. Today Proc. 2023, 76, 647–653. [Google Scholar] [CrossRef]
- Luna, C.B.B.; do Nascimento, E.P.; Siqueira, D.D.; Soares, B.G.; Agrawal, P.; de Mélo, T.J.A.; Araújo, E.M. Tailoring Nylon 6/Acrylonitrile-Butadiene-Styrene Nanocomposites for Application against Electromagnetic Interference: Evaluation of the Mechanical, Thermal and Electrical Behavior, and the Electromagnetic Shielding Efficiency. Int. J. Mol. Sci. 2022, 23, 9020. [Google Scholar] [CrossRef] [PubMed]
- Lay, M.; Thajudin, N.L.N.; Hamid, Z.A.A.; Rusli, A.; Abdullah, M.K.; Shuib, R.K. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B Eng. 2019, 176, 107341. [Google Scholar] [CrossRef]
- Peterson, A.M. Review of acrylonitrile butadiene styrene in fused filament fabrication: A plastics engineering-focused perspective. Addit. Manuf. 2019, 27, 363–371. [Google Scholar] [CrossRef]
- Bhaskar, R.; Butt, J.; Shirvani, H. Investigating the Properties of ABS-Based Plastic Composites Manufactured by Composite Plastic Manufacturing. J. Manuf. Mater. Process. 2022, 6, 163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.M. Recent Progress in Sustainable Recycling of Waste Acrylonitrile–Butadiene–Styrene (ABS) Plastics. Sustainability 2025, 17, 8742. https://doi.org/10.3390/su17198742
Jung SM. Recent Progress in Sustainable Recycling of Waste Acrylonitrile–Butadiene–Styrene (ABS) Plastics. Sustainability. 2025; 17(19):8742. https://doi.org/10.3390/su17198742
Chicago/Turabian StyleJung, Simon MoonGeun. 2025. "Recent Progress in Sustainable Recycling of Waste Acrylonitrile–Butadiene–Styrene (ABS) Plastics" Sustainability 17, no. 19: 8742. https://doi.org/10.3390/su17198742
APA StyleJung, S. M. (2025). Recent Progress in Sustainable Recycling of Waste Acrylonitrile–Butadiene–Styrene (ABS) Plastics. Sustainability, 17(19), 8742. https://doi.org/10.3390/su17198742