Soy Molasses: A Sustainable Resource for Industrial Biotechnology
Abstract
:1. Introduction
2. Soybean Processing and Byproducts
3. Characterization of Soy Molasses
4. Biotechnological Strategies for Soy Molasses Valorization
4.1. Organic Acid Production
4.2. Bacterial Cellulose Production
4.3. Bioethanol and Biogas Production
4.4. Functional Oligosaccharides
4.5. Enzyme and Biosurfactant Production
4.6. Nanomaterial Synthesis
4.7. Bioplastics and Polyhydroxyalkanoates (PHA)
5. Benefits and Challenges
5.1. Environmental Benefits
5.2. Economic Benefits
5.3. Technical Challenges
5.4. Economic and Scalability Challenges
5.5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pires, J.R.A.; Souza, V.G.L.; Fernando, A.L. Valorization of energy crops as a source for nanocellulose production—Current knowledge and future prospects. Ind. Crops Prod. 2019, 140, e111642. [Google Scholar] [CrossRef]
- Devanthi, P.V.P.; Pratama, F.; Pramanda, I.T.; Bani, M.D.; Kadar, A.D.; Kho, K. Exploring the Potential of Aspergillus oryzae for Sustainable Mycoprotein Production Using Okara and Soy Whey as Cost-Effective Substrates. J. Fungi 2024, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, J.; Martinez-Hernandez, E.; Murphy, R.J.; Ng, D.K.S.; Hassim, M.H.; Ng, K.S.; Kin, W.Y.; Jaye, I.F.M.; Hang, M.Y.L.P.; Andiappan, V. Role of bioenergy, biorefinery and bioeconomy in sustainable development: Strategic pathways for Malaysia. Renew. Sustain. Energy Rev. 2018, 81, 1966–1987. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA) Foreign Agricultural Service. Brazil Oilseeds and Products Annual Report. 2023. Available online: https://www.fas.usda.gov/data/brazil-oilseeds-and-products-annual-7 (accessed on 10 February 2025).
- União Brasileira do Biodiesel (Ubrabio) and Fundação Getúlio Vargas (FGV). Biodiesel and Its Contribution to Brazilian Development. 2010. Available online: https://fgvenergia.fgv.br/sites/fgvenergia.fgv.br/files/ubrabio.pdf (accessed on 10 February 2025).
- Karim, A.; Osse, E.F.; Khalloufi, S. Innovative strategies for valorization of byproducts from soybean industry: A review on status, challenges, and sustainable approaches towards zero-waste processing systems. Heliyon 2025, 11, e42118. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Lin, M.; Yang, S.T. Propionic acid production from soy molasses by Propionibacterium acidipropionici: Fermentation kinetics and economic analysis. Bioresour. Technol. 2018, 250, 1–9. [Google Scholar] [CrossRef]
- Pan, N.C.; Vignoli, J.A.; Baldo, C.; Pereira, H.C.B.; da Silva, R.S.S.F.; Celligoi, M.A.P.C. Agroindustrial byproducts for the production of hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. Int. J. Sci. Technol. Res. 2015, 4, 114–118. [Google Scholar]
- Kalashnikova, O.B.; Pankova, E.; Sukhikh, S.; Babich, O.; Samusev, I.; Tcibulnikova, A.; Ivanova, S.; Kriger, O. Production of bacterial cellulose using a symbiotic consortium of bacteria and yeast on soy molasses medium. LWT 2024, 205, 116480. [Google Scholar] [CrossRef]
- Solaiman, D.K.Y.; Ashby, R.D.; Crocker, N.V. Bioprocess for hydrolysis of galacto-oligosaccharides in soy molasses and tofu whey by recombinant Pseudomonas chlororaphis. Biocatal. Agric. Biotechnol. 2020, 24, 101529. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Michelon, M.; Burkert, C.A.V. Biotechnological potential of soy molasses for the production of extracellular polymers by diazotrophic bacteria. Biocatal. Agric. Biotechnol. 2020, 25, 101609. [Google Scholar] [CrossRef]
- Pretto, C.; Giordano, R.L.C.; Tardioli, P.W.; Costa, C.B.B. Possibilities for producing energy, fuels, and chemicals from soybean: A biorefinery concept. Waste Biomass Valorization 2018, 9, 1703–1730. [Google Scholar] [CrossRef]
- Fazili, A.B.A.; Shah, A.M.; Zan, X.; Naz, T.; Nosheen, S.; Nazir, Y.; Ullah, S.; Zhang, H.; Song, Y. Mucor circinelloides: A model organism for oleaginous fungi and its potential applications in bioactive lipid production. Biotechnol. Lett. 2022, 44, 432–444. [Google Scholar] [CrossRef]
- Cheng, C.; Zhou, Y.; Lin, M.; Wei, P.; Yang, S.T. Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis. Bioresour. Technol. 2017, 223, 166–174. [Google Scholar] [CrossRef]
- Fernandes, S.; Dias, B.; Belo, I.; Lopes, M. Soy molasses as a new and low-cost substrate for gluconic acid production by Aspergillus niger. Process Biochem. 2024, 146, 241–249. [Google Scholar] [CrossRef]
- Paulinetti, A.P.; Guerieri, F.F.; Augusto, I.M.G.; Lazaro, C.Z.; Albanez, R.; Lovato, G.; Ratusznei, S.M.; Rodrigues, J.A.D. Thermophilic and mesophilic anaerobic digestion of soy molasses: A performance vs. stability trade-off. J. Environ. Manag. 2024, 370, 112508. [Google Scholar] [CrossRef]
- Duru, K.C.; Slesarev, G.P.; Aboushanab, S.A.; Kovalev, I.S.; Zeidler, D.M.; Kovaleva, E.G.; Bhat, R. An eco-friendly approach to enhance the extraction and recovery efficiency of isoflavones from kudzu roots and soy molasses wastes using ultrasound-assisted extraction with natural deep eutectic solvents (NADES). Ind. Crops Prod. 2022, 182, 114886. [Google Scholar] [CrossRef]
- Rodrigues, B.C.G.; De Mello, B.S.; da Costa Araujo, M.L.G.; da Silva, G.H.R.; Sarti, A. Soy molasses as feedstock for sustainable generation of biomethane using high-rate anaerobic reactor. J. Environ. Chem. Eng. 2021, 9, 105226. [Google Scholar] [CrossRef]
- Yang, R.; Ma, J.; Wang, Z.; Du, Y.; Tian, S.; Fan, G.; Liu, X.; Teng, C. The Identification of a Strain for the Biological Purification of Soy Molasses to Produce Functional Soy Oligosaccharides and Optimize Purification Conditions. Foods 2024, 13, 296. [Google Scholar] [CrossRef]
- Miranda, L.C.R.; Gomes, R.J.; Mandarino, J.M.G.; Ida, E.L.; Spinosa, W.A. Acetic acid fermentation of soy molasses and characterization of the produced vinegar. Food Technol. Biotechnol. 2020, 58, 84–90. [Google Scholar] [CrossRef]
- Sancheti, A.; Thompson, E.R.; Ju, L.K. Factors influencing the enzymatic hydrolysis of soy molasses into fermentation feedstock. Enzyme Microb. Technol. 2023, 170, 110302. [Google Scholar] [CrossRef]
- Batista, V.S.F.; Nunes, G.L.; Viegas, G.I.; Lucas, B.N.; Bochi, V.C.; Emanuelli, T.; Barin, J.S.; de Menezes, C.R.; da Rosa, C.S. Extraction, characterization and microencapsulation of isoflavones from soy molasses. Cienc. Rural 2020, 50, e20190341. [Google Scholar] [CrossRef]
- De Mello, B.S.; Rodrigues, B.C.G.; Medin, K.J.D.; Sarti, A. Biological Degradation of Soy molasses by Modified Anaerobic–Aerobic Baffled Reactor. BioEnergy Res. 2023, 16, 673–682. [Google Scholar] [CrossRef]
- Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci. Technol. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Van der Riet, W.; Wight, A.W.; Cilliers, J.J.L.; Datel, J.M. Food chemical investigation of tofu and its byproduct okara. Food Chem. 1989, 34, 193–202. [Google Scholar] [CrossRef]
- Redondo-Cuenca, A.; Villanueva-Suárez, M.J.; Mateos-Aparicio, I. Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem. 2008, 108, 1099–1105. [Google Scholar] [CrossRef]
- Kumar, S.P.J.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K.V. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J. 2017, 11, 9. [Google Scholar] [CrossRef]
- Lavenburg, V.M.; Rosentrater, K.A.; Jung, S. Extraction Methods of Oils and Phytochemicals from Seeds and Their Environmental and Economic Impacts. Processes 2021, 9, 1839. [Google Scholar] [CrossRef]
- Vong, W.C.; Liu, S.-Q. Biovalorisation of okara (soybean residue) for food and nutrition. Trends Food Sci. Technol. 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Khare, S.K.; Jha, K.; Gandhi, A.P. Citric acid production from okara (soy-residue) by solid-state fermentation. Bioresour. Technol. 1995, 54, 323–325. [Google Scholar] [CrossRef]
- Privatti, R.T.; Rodrigues, C.E.d.C. An overview of the composition, applications, and recovery techniques of the components of okara aimed at the biovalorization of this soybean processing residue. Food Rev. Int. 2021, 39, 726–749. [Google Scholar] [CrossRef]
- Liu, X.; Yu, X.; Xia, J.; Lv, J.; Xu, J.; Dai, B.; Xu, X.; Xu, J. Erythritol production by Yarrowia lipolytica from okara pretreated with the in-house enzyme pools of fungi. Bioresour. Technol. 2017, 244, 1089–1095. [Google Scholar] [CrossRef]
- Preece, K.; Hooshyar, N.; Zuidam, N. Whole soybean protein extraction processes: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 163–172. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of fermentation in improving nutritional quality of soybean meal—A review. Asian-Australas. J. Anim. Sci. 2016, 29, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Irwin, S. The Value of Soybean Oil in the Soybean Crush: Further Evidence on the Impact of the U.S. Biodiesel Boom. In farmdoc daily (7):169; Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign: Urbana, IL, USA, 14 September 2017. [Google Scholar]
- Middelbos, I.S.; Fahey, G.C., Jr. 9—Soybean Carbohydrates. Soybeans 2008, 269–296. [Google Scholar] [CrossRef]
- Deak, N.A.; Johnson, L.A.; Lusas, E.W.; Rhee, K.C. 19—Soy Protein Products, Processing, and Utilization. Soybeans 2008, 661–724. [Google Scholar] [CrossRef]
- Silva, F.B.D.; Romao, B.B.; Cardoso, V.L.; Filho, U.C.; Ribeiro, E.J. Production of ethanol from enzymatically hydrolyzed soy molasses. Biochem. Eng. J. 2012, 69, 61–68. [Google Scholar] [CrossRef]
- Alarape, K.; Adeniyi, A.; Ayodele, T.; Bello, I.A.; Sarker, N.C.; Clementson, C.; Hammed, A. Extraction and Nutritional Value of Soybean Meal Protein Isolate. Nutraceuticals 2024, 4, 503–521. [Google Scholar] [CrossRef]
- Soccol, C.R.; Pandey, A.; Larroche, C. Fermentation Processes Engineering in the Food Industry; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Loman, A.A.; Ju, L.-K. Soybean carbohydrate as fermentation feedstock for production of biofuels and value-added chemicals. Process Biochem. 2016, 51, 1046–1057. [Google Scholar] [CrossRef]
- Siqueira, P.F.; Karp, S.G.; Carvalho, J.C.; Sturm, W.; Rodríguez-León, J.A.; Tholozan, J.-L.; Singhania, R.R.; Pandey, A.; Soccol, C.R. Production of bio-ethanol from soy molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresour. Technol. 2008, 99, 8156–8163. [Google Scholar] [CrossRef]
- Morais Júnior, W.G.J.; Kamimura, E.S.; Ribeiro, E.J.; Pessela, B.C.; Cardoso, V.L.; de Resende, M.M. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soy molasses by submerged fermentation. Protein Expr. Purif. 2016, 123, 26–34. [Google Scholar] [CrossRef]
- Dong, J.; Du, Y.; Zhou, Y.; Yang, S.T. Butanol production from soybean hull and soy molasses by acetone-butanol-ethanol fermentation. ACS Symp. Ser. 2014, 1178, 25–41. [Google Scholar]
- Qureshi, N.; Lolas, A.; Blaschek, H.P. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. J. Ind. Microbiol. Biotechnol. 2001, 26, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Romão, B.B.; Silva, F.B.; Resende, M.M.; Cardoso, V.L. Ethanol production from hydrolyzed soy molasses. Energy Fuel 2012, 26, 2310–2316. [Google Scholar] [CrossRef]
- Colletti, A.; Attrovio, A.; Boffa, L.; Mantegna, S.; Cravotto, G. Valorisation of by-products from soybean (Glycine max (L.) Merr.) processing. Molecules 2020, 25, 2129. [Google Scholar] [CrossRef]
- Dedousi, M.; Fourtaka, K.; Melanouri, E.-M.; Argyropoulos, D.; Psallida, C.; Diamantis, I.; Papanikolaou, S.; Diamantopoulou, P. Detoxification of Molasses and Production of Mycelial Mass and Valuable Metabolites by Morchella Species. Appl. Sci. 2021, 11, 9481. [Google Scholar] [CrossRef]
- Guedes, A.R.; Corazza, M.L.; Zanoelo, E.F. Boiling point, specific heat and density measurements and modeling of soybean molases and its aqueous solution. J. Food Process Eng. 2016, 39, 283–295. [Google Scholar] [CrossRef]
- Rodrigues, M.S.; Moreira, F.S.; Cardoso, V.L.; Resende, M.M. Soy molasses as a fermentation substrate for the production of biosurfactant using Pseudomonas aeruginosa ATC 10145. Environ. Sci. Pollut. Res. 2017, 24, 18699–18709. [Google Scholar] [CrossRef]
- Pascoalino, L.A.; Reis, F.S.; Barros, L.; Rodrigues, M.Â.; Correia, C.M.; Vieira, A.L.; Ferreira, I.C.R.; Barreira, J.C. Effect of plant biostimulants on nutritional and chemical profiles of almond and hazelnut. Appl. Sci. 2021, 11, 7778. [Google Scholar] [CrossRef]
- Kora, A.J. Commercial bacterial and fungal microbial biostimulants used for agriculture in India: An overview. In Microbial Biostimulants for Sustainable Agriculture and Environmental Bioremediation; CRC Press: Boca Raton, FL, USA, 2022; pp. 159–175. [Google Scholar]
- Correa da Silva, A.P.F.; Dorigan, B.S.R.; da Silva-Neto, J.M.; Rosa-Magri, M.M.; Rossi, F.; Francisco, K.R.; Ceccato-Antonini, S.R.; Fontanetti, A. Soy Molasses as Culture Medium for Bacillus Species Aiming at Plant Growth Promotion. Fermentation 2024, 10, 403. [Google Scholar] [CrossRef]
- Rakicka-Pustułka, M.; Ziuzia, P.; Pierwoła, J.; Szymański, K.; Wróbel-Kwiatkowska, M.; Lazar, Z. The microbial production of kynurenic acid using Yarrowia lipolytica yeast growing on curde glycerol and soy molasses. Front. Bioeng. Biotechnol. 2022, 10, 936137. [Google Scholar] [CrossRef]
- Santo, C.M.E.; Pinheiro, I.C.; Jesus, G.F.A.; Mouriño, J.L.P.; Vieira, F.N.; Seiffert, W.Q. Soy molasses as an organic carbon source in the farming of Litopenaeus vannamei in a biofloc system. Aquac. Res. 2017, 48, 1827–1835. [Google Scholar] [CrossRef]
- Paulinetti, A.P.; Batista, L.P.P.; Lazaro, C.Z.; Albanez, R.; Ratusznei, S.M.; Lovato, G.; Rodrigues, J.A.D. Treatment of soybean processing residues for energy recovery and environmental compliance: Tehcnical and economic feasibility. Energy 2023, 279, 128061. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Zhang, L.-L.; Liu, S.; Liu, X.-Y.; Yu, X.-J. Whole Conversion of Soy molasses into Isomaltulose and Ethanol by Combining Enzymatic Hydrolysis and Successive Selective Fermentations. Biomolecules 2019, 9, 353. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, Y. Enzyme applications in soy molasses valorization. Crit. Rev. Biotechnol. 2015, 35, 123–136. [Google Scholar]
- Lima, F.A.; Rola, J.C.; Freitas, M.M.G.; Afonso, J.M.M.A.; Resende, M.M. Acid Phosphatase Imobilization and Production Study by Trichoderma spp. in Soy molasses. Chem. Eng. Technol. 2022, 45, 979–984. [Google Scholar] [CrossRef]
- Augusto, P.E.; Lazaro, C.Z.; Albanez, R.; Ratusznei, S.M.; Lovato, G.; Rodrigues, J.A.D. Hydrogen production via dark fermentation using soy molasses as substrate. Energy J. 2024, 298, e131301. [Google Scholar] [CrossRef]
- Souza, E.F.; Furtado, M.R.; Carvalho, C.W.; Freitas-Silva, O.; Gottschalk, L.M. Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soy molasses. Int. J. Biol. Macromol. 2020, 146, 285–289. [Google Scholar] [CrossRef]
- Huang, W.M.; Chen, J.H.; Nagarajan, D.; Lee, C.K.; Varjani, S.; Lee, D.J.; Chang, J.S. Immobilization of Chlorella sorokiniana AK-1 in bacterial cellulose by co-culture and its application in wastewater treatment. J. Taiwan Inst. Chem. Eng. 2022, 137, 104286. [Google Scholar] [CrossRef]
- Kanwugu, O.N.; Ibn-Wuni, I.; Shevyrin, V.A.; Williams, T.C.; Glukhareva, T.V. Biovalorisation of agro-industrial wastes into astaxanthin by Xanthophyllomyces dendrorhous. Appl. Microbiol. Biotechnol. 2024, 108, 429. [Google Scholar] [CrossRef]
- Geremew Kassa, M.; Asemu, A.M.; Belachew, M.T.; Satheesh, N.; Abera, B.D.; Alemu Teferi, D. Review on the application, health usage, and negative effects of molasses. CyTA-J. Food 2024, 22, 2321984. [Google Scholar] [CrossRef]
- Paulinetti, A.P.; Augusto, I.M.G.; Batista, L.P.P.; Tavares, A.G.B.; Albanez, R.; Ratusznei, S.M.; Lovato, G.; Rodrigues, J.A.D. Anaerobic digestion as a core process for sustainable energy production in the soybean biorefinery: A techno-economic assessment. Sustain. Horiz. 2022, 3, 100024. [Google Scholar] [CrossRef]
- Fu, Z.; Cheng, S.; Ma, J.; Basit, R.A.; Du, Y.; Tian, S.; Fan, G. Identification of Yeast Strain YA176 for Bio-Purification of Soy Molasses to Produce Raffinose Family Oligosaccharides and Optimization of Fermentation Conditions. Appl. Biochem. Biotechnol. 2025, 197, 943–963. [Google Scholar] [CrossRef] [PubMed]
- Ta, X.; Wang, B.; Bai, J.; Yu, J.; Chen, H.; Wang, C. The source, extraction, purification, physiological function, and application of stachyose in the food industry. Food Chem. 2024, 461, 140791. [Google Scholar] [CrossRef]
- Aljuraifani, A.; Berekaa, M.M.; Ghazwani, A.A. Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. Appl. Microbiol. Biotechnol. 2018, 96, 333–340. [Google Scholar] [CrossRef]
- Ramírez, I.M.; Tsaousi, K.; Rudden, M.; Marchant, R.; Alameda, E.J.; Román, M.G.; Banat, I.M. Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source. Bioresour. Technol. 2015, 198, 231–236. [Google Scholar] [CrossRef]
- Morillo, E.; Villaverde, J. Advanced technologies for the remediation of pesticide-contaminated soils. Sci. Total Environ. 2017, 586, 576–597. [Google Scholar] [CrossRef] [PubMed]
- Inès, M.; Mouna, B.; Marwa, E.; Dhouha, G. Biosurfactants as Emerging Substitutes of Their Synthetic Counterpart in Detergent Formula: Efficiency and Environmental Friendly. J. Polym. Environ. 2023, 31, 2779–2791. [Google Scholar] [CrossRef]
- da Silva, I.A.; de Almeida, F.C.G.; Alves, R.N.; Cunha, M.C.C.; de Oliveira, J.C.M.; Fernandes, M.L.B.; Sarubbo, L.A. The Formulation of a Natural Detergent with a Biosurfactant Cultivated in a Low-Cost Medium for Use in Coastal Environmental Remediation. Fermentation 2024, 10, 332. [Google Scholar] [CrossRef]
- Ceresa, C.; Fracchia, L.; Sansotera, A.C.; De Rienzo, M.A.D.; Banat, I.M. Harnessing the Potential of Biosurfactants for Biomedical and Pharmaceutical Applications. Pharmaceutics 2023, 15, 2156. [Google Scholar] [CrossRef]
- Wang, X.; An, J.; Cao, T.; Guo, M.; Han, F. Application of Biosurfactants in Medical Sciences. Molecules 2024, 29, 2606. [Google Scholar] [CrossRef]
- Khairunnisa, Z.; Tuygunov, N.; Cahyanto, A.; Aznita, W.H.; Purwasena, I.A.; Noor, N.S.M.; Azami, N.H.; Zakaria, M.N. Potential of microbial-derived biosurfactants for oral applications—A systematic review. BMC Oral. Health 2024, 24, 707. [Google Scholar] [CrossRef]
- Hashim, Z.A.; Maillard, J.Y.; Wilson, M.J.; Waddington, R.J. Determining the potential use of biosurfactants in preventing endodontic infections. Eur. J. Oral. Sci. 2022, 130, e12900. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, A.P.; Dekaliuk, M.O. Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl. Fluoresc. 2013, 1, e042001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chung, T.S. Graphene oxide membranes for nanofiltration. Curr. Opin. Chem. Eng. 2017, 16, 9–15. [Google Scholar] [CrossRef]
- Mello, B.S.; Rodrigues, B.C.G.; Sarti, A. Comparative performance of high-rate anaerobic reactors for biodegradation of soy molasses. Environ. Technol. Innov. 2021, 24, 101937. [Google Scholar] [CrossRef]
- Full, T.D.; Jung, D.O.; Madigan, M.T. Production of poly-β-hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Lett. Appl. Microbiol. 2006, 43, 377–384. [Google Scholar] [CrossRef]
- Wu, M.; Gong, X.; Liu, X.; Tu, W.; Yu, P.; Zou, Y.; Wang, H. Comprehensive techno-environmental evaluation of a pilot-scale PHA production from food waste in China. Environ. Sci. Technol. 2022, 57, 1467–1478. [Google Scholar] [CrossRef]
- Bressanin, J.M.; de Mesquita Sampaio, I.L.; Geraldo, V.C.; Klein, B.C.; Chagas, M.F.; Bonomi, A.; Maciel Filho, R.; Cavalett, O. Techno-economic and environmental assessment of polylactic acid production integrated with the sugarcane value chain. Sustain. Prod. Consum. 2022, 34, 244–256. [Google Scholar] [CrossRef]
- FDA. U.S. Food and Drug Administration: Agency Response Letter GRAS Notice No. GRN 000623. 2018. Available online: https://www.fda.gov/food/gras-notice-inventory/agency-response-letter-gras-notice-no-grn-000623?utm (accessed on 6 June 2025).
- FDA. U.S. Food and Drug Administration: GRAS Notice 735 for 2′-Fucosyllactose. 2017. Available online: https://manuals.plus/m/160d17fa98647fce09de187d4c6fd18a48192ecbdc62847e1ca69929c7eb7dd2?utm (accessed on 6 June 2025).
- European Commission. COM(2018) 35, Report on the Impact of the Use of Oxo-Degradable Plastics, Including Oxo-Degradable Plastic Carrier Bags, on the Environment, 16 January 2018. Available online: https://docs.european-bioplastics.org/PR/2017/EUBP_PR_EU_Plastics_Strategy_180117.pdf (accessed on 6 June 2025).
Component | Soy Molasses | Okara | Soy Hulls | References |
---|---|---|---|---|
Carbohydrates (% dry wt) | 50–60 | 10–15 | 30–40 | [7,9] |
Protein (% dry wt) | 6–8 | 25–30 | 10–15 | [49,50] |
Lipids (% dry wt) | 5–8 | 10–15 | 1–2 | [10,13] |
Fiber (% dry wt) | 5–10 | 55 | 55–60 | [8,19] |
Bioactives | High | Moderate | Low | [11,17] |
Strategy | Main Product(s) | Applications | Advantages | Challenges | References |
---|---|---|---|---|---|
Organic Acid Production | Propionic acid, lactic acid | Food preservation, bioplastics | Cost-effective substrate | Requires pre-treatment for RFO hydrolysis | [7,8,56] |
Bacterial Cellulose | Bacterial cellulose | Medical devices, food packaging | High-value biopolymer | Scaling up and quality consistency | [13,14,58] |
Bioethanol and Biogas | Ethanol, biogas | Renewable energy | Renewable and abundant feedstock | Phenolic inhibitors, detoxification required | [7,15,59] |
Functional Oligosaccharides | Raffinose, stachyose | Prebiotics, functional foods | High market demand | Optimization for industrial scalability | [9,19,55] |
Enzymes and Biosurfactants | Proteases, sophorolipids | Bioremediation, cosmetics, pharmaceuticals | Low toxicity, environmental benefits | Strain engineering for yield improvement | [15,19,60] |
Nanomaterials | Graphene oxide, carbon dots | Electronics, bioimaging, drug delivery | High-value, innovative applications | High production costs | [8,54,58] |
Biofloc Systems | Improved water quality | Aquaculture | Enhances sustainability of aquaculture systems | Limited adoption in large-scale farming | [10,12,61] |
Bioplastics (PHA) | Polyhydroxyalkanoates | Biodegradable plastics | Sustainable, renewable | High costs of production | [13,15,55] |
Category | Benefits | Challenges | References |
---|---|---|---|
Environmental | Waste reduction, lower GHG emissions, support for circular bioeconomy | Limited adoption of biotechnological processes in waste management | [7,58,59] |
Economic | Higher-value products (e.g., prebiotics, bioplastics), reduced feedstock costs | High initial investment in infrastructure, process costs | [8,9,65] |
Technical | High nutrient content for diverse applications | Variability in composition, inhibitory compounds, need for pre-treatment | [7,20,79] |
Market | Rising demand for sustainable and functional products | Regulatory hurdles, consumer awareness and acceptance | [18,55,65] |
Scalability | Potential for large-scale production of biofuels and biomaterials | Need for large-scale fermentation and purification systems, cost of enzyme treatments | [13,14,17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambarato, B.C.; Carvalho, A.K.F.; De Oliveira, F.; da Silva, S.S.; da Silva, M.L.; Bento, H.B.S. Soy Molasses: A Sustainable Resource for Industrial Biotechnology. Sustainability 2025, 17, 5667. https://doi.org/10.3390/su17125667
Gambarato BC, Carvalho AKF, De Oliveira F, da Silva SS, da Silva ML, Bento HBS. Soy Molasses: A Sustainable Resource for Industrial Biotechnology. Sustainability. 2025; 17(12):5667. https://doi.org/10.3390/su17125667
Chicago/Turabian StyleGambarato, Bruno C., Ana Karine F. Carvalho, Fernanda De Oliveira, Silvio S. da Silva, Milena Lorenzi da Silva, and Heitor B. S. Bento. 2025. "Soy Molasses: A Sustainable Resource for Industrial Biotechnology" Sustainability 17, no. 12: 5667. https://doi.org/10.3390/su17125667
APA StyleGambarato, B. C., Carvalho, A. K. F., De Oliveira, F., da Silva, S. S., da Silva, M. L., & Bento, H. B. S. (2025). Soy Molasses: A Sustainable Resource for Industrial Biotechnology. Sustainability, 17(12), 5667. https://doi.org/10.3390/su17125667