Pollution Reduction, Informatization and Sustainable Urban Development—Evidence from the Smart City Projects in China
Abstract
:1. Introduction
2. Theoretical Concept
2.1. Background of Smart City
2.2. Research Hypothesis
2.2.1. The Technique Effect
2.2.2. The Structure Effect
3. Methodology and Data
3.1. Econometric Model and Variables
3.2. Data and Sample Selection
4. Empirical Results and Discussion
4.1. Results from Time-Varying DID Regression
4.2. Robustness Test
4.2.1. Parallel Trend Assumption
4.2.2. Placebo Test
5. Mechanism Analysis
5.1. The Perspective of Macro-Economy
5.2. The Perspective of Government
5.3. The Perspective of Enterprise
6. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H.; Qi, S.; Chen, Y. Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies. China Econ. Rev. 2023, 78, 101933. [Google Scholar] [CrossRef]
- Shen, L.; Shuai, C.; Jiao, L.; Tan, Y.; Song, X. Dynamic sustainability performance during urbanization process between BRICS countries. Habitat Int. 2017, 60, 19–33. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, M.; Chen, S.; Wang, W.; Nie, R. The environmental Kuznets curve for PM2.5 pollution in Beijing-Tianjin-Hebei region of China: A spatial panel data approach. J. Clean. Prod. 2019, 220, 984–994. [Google Scholar] [CrossRef]
- He, B.; Zhao, D.; Zhu, J.; Darko, A.; Gou, Z. Promoting and implementing urban sustainability in china: An integration of sustainable initiatives at different urban scales. Habitat Int. 2018, 82, 83–93. [Google Scholar] [CrossRef]
- Hu, H.; Xie, N.; Fang, D.; Zhang, X. The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries. Appl. Energy 2018, 211, 1229–1244. [Google Scholar] [CrossRef]
- Paulin, A. Informating Smart Cities Governance? Let Us First Understand the Atoms! J. Knowl. Econ. 2016, 7, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Olsson, A.R.; Håkansson, M. The role of local governance and environmental policy integration in Swedish and Chinese eco-city development. J. Clean. Prod. 2016, 134, 78–86. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Y.; Zhou, S.; Wu, Z. Achieving sustainable development goal 9: A study of enterprise resource optimization based on artificial intelligence algorithms. Resour. Policy 2023, 80, 103212. [Google Scholar] [CrossRef]
- Gravemeijer, K.; Stephan, M.; Julie, C.; Lin, F.; Ohtani, M. What mathematics education may prepare students for the society of the future? Int. J. Sci. Math. Educ. 2017, 15, 105–123. [Google Scholar] [CrossRef] [Green Version]
- Neirotti, P.; De Marco, A.; Cagliano, C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, S.; Liu, Y.; Ma, H.; Liu, Q. Examining the relationship between urbanization and the eco-environment using a coupling analysis: Case study of Shanghai, China. Ecol. Indic. 2017, 77, 185–193. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M.; Buys, L.; Ioppolo, G.; Sabatini-Marques, J.; da Costa, E.M.; Hyo, J.; Yun, J. Understanding ‘smart cities’: Intertwining development drivers with desired outcomes in a multidimensional framework. Cities 2018, 81, 145–160. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Kong, D. The real effect of legal institutions: Environmental courts and firm environmental protection expenditure. J. Environ. Econ. Manag. 2019, 98, 102254. [Google Scholar] [CrossRef]
- Wu, K.-J.; Liao, C.-J.; Tseng, M.-L.; Lim, M.K.; Hu, J.; Tan, K. Toward sustainability: Using big data to explore the decisive attributes of supply chain risks and uncertainties. J. Clean. Prod. 2017, 142, 663–676. [Google Scholar] [CrossRef]
- Hasija, S.; Shen, Z.M.; Teo, C. Smart city operations: Modeling challenges and opportunities. Manuf. Serv. Oper. Manag. 2020, 22, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Sun, T.; Feng, Q. Dynamic spatial spillover effect of urbanization on environmental pollution in China considering the inertia characteristics of environmental pollution. Sustain. Cities Soc. 2020, 53, 101903. [Google Scholar] [CrossRef]
- Gu, F. Exploring the Application and Optimization Strategy of the LMBP Algorithm in Supply Chain Performance Evaluation. Comput. Intell. Neurosci. 2022, 7977335, 7. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, H.; Dai, W.; Burns, K. Evaluation of industrial green development and industrial green competitiveness: Evidence from Chinese urban agglomerations. Ecol. Indic. 2021, 124, 107371. [Google Scholar] [CrossRef]
- Asongu, S.A. ICT, openness and CO2, emissions in Africa. Environ. Sci. Pollut. Res. 2018, 25, 9351–9359. [Google Scholar] [CrossRef] [Green Version]
- Arsenio, E.; Dias, J.V.; Lopes, S.A.; Pereira, H.I. Assessing the market potential of electric bicycles and ICT for low carbon school travel: A case study in the smart city of ÁGUEDA. Eur. Transp. Res. Rev. 2018, 10, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Salahuddin, M.; Alam, K.; Ozturk, I. The effects of Internet usage and economic growth on CO2 emissions in OECD countries: A panel investigation. Renew. Sustain. Energy Rev. 2016, 62, 1226–1235. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kamruzzaman, M. Does smart city policy lead to sustainability of cities? Land Use Policy 2018, 73, 49–58. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, F.; Li, C.; Xiong, W.; Chen, Y.; Xie, F. Does China’s low-carbon city pilot policy promote green development? Evidence from the digital industry. J. Innov. Knowl. 2023, 8, 100339. [Google Scholar] [CrossRef]
- Chen, Z.; Kahn, M.E.; Liu, Y.; Wang, Z. The consequences of spatially differentiated water pollution regulation in china. J. Environ. Econ. Manag. 2018, 88, 468–485. [Google Scholar] [CrossRef]
- Ravinesh, R.; Peter, K.; Stauvermann, J.; Samitas, A. The effects of ICT⁎ on output per worker: A study of the Chinese economy. Telecommun. Policy 2016, 40, 102–115. [Google Scholar]
- Hu, H.; Xu, J.; Liu, M.; Lim, M.K. Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning. J. Bus. Res. 2023, 156, 113480. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Zhao, Y.; Chen, C.; Dong, X. Risk prediction and credibility detection of network public opinion using blockchain technology. Technol. Forecast. Soc. Change 2023, 187, 122177. [Google Scholar] [CrossRef]
- Li, P.; Lu, Y.; Wang, J. Does flattening government improve economic performance? evidence from china. J. Dev. Econ. 2016, 123, 18–37. [Google Scholar] [CrossRef]
- Ozcan, B.; Apergis, N. The impact of internet use on air pollution: Evidence from emerging countries. Environ. Sci. Pollut. Res. Int. 2017, 25, 4174–4189. [Google Scholar] [CrossRef]
Panel A: All Samples | Panel B: Treatment Group | Panel C: Control Group | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Obs | Mean | Sd | Obs | Mean | Sd | Obs | Mean | Sd |
SO2 | 3210 | 48.32 | 43.81 | 1350 | 56.53 | 48.65 | 1860 | 42.37 | 38.88 |
SO2(per) | 3210 | 0.47 | 0.64 | 1350 | 0.51 | 0.67 | 1860 | 0.44 | 0.61 |
FS | 3210 | 0.16 | 0.07 | 1350 | 0.15 | 0.07 | 1860 | 0.17 | 0.08 |
Ur | 3210 | 0.37 | 0.21 | 1350 | 0.40 | 0.21 | 1860 | 0.36 | 0.20 |
Indus | 3210 | 0.81 | 0.30 | 1350 | 0.79 | 0.30 | 1860 | 0.82 | 0.31 |
Open | 3210 | 0.08 | 0.10 | 1350 | 0.08 | 0.10 | 1860 | 0.08 | 0.10 |
GDP | 3210 | 9.82 | 0.73 | 1350 | 9.96 | 0.75 | 1860 | 9.71 | 0.69 |
SO2 | ||||
---|---|---|---|---|
Variable | Total | Per Capital | Total | Per Capital |
SCP | (1) | (2) | (3) | (4) |
−0.204 *** | −0.225 *** | −0.207 *** | −0.211 *** | |
Control variable | (0.066) | (0.075) | (0.068) | (0.077) |
Time fixed effect | Y | Y | ||
City fixed effect | Y | Y | Y | Y |
N | Y | Y | Y | Y |
correlation (R root 2) | 3210 | 3210 | 3210 | 3210 |
Variable | 0.3212 | 0.3812 | 0.3243 | 0.3857 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Infor | Innov | Indus | SO2 | ||||
Low-Level Innov | High-Level Innov | Low-Level Indus | High-Level Indust | ||||
SCP | 0.0579 * | −0.0988 | −0.1724 *** | −0.1059 | −0.2610 ** | ||
(0.033) | (0.172) | (0.066) | (0.076) | (0.109) | |||
Infor | 0.1006 * | 0.0219 * | |||||
(0.056) | (0.012) | ||||||
Controls | Y | Y | Y | Y | Y | Y | Y |
Time fixed effect | Y | Y | Y | Y | Y | Y | Y |
City fixed effect | Y | Y | Y | Y | Y | Y | Y |
N | 3210 | 3210 | 3210 | 1605 | 1605 | 1605 | 1605 |
correlation (R root 2) | 0.8266 | 0.7097 | 0.4604 | 0.2429 | 0.4799 | 0.3609 | 0.2989 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | |
---|---|---|---|---|---|---|---|
Smart | Innovation | Structure | SO2 | ||||
Low-Level Innovation | High-Level Innovation | Low-Level Structure | High-Level Structure | ||||
SCP | 7.1487 *** | 0.3787 * | 3.6387 *** | −0.1774 ** | −0.3146 *** | −0.1862 ** | −0.2164 *** |
(0.432) | (0.204) | (0.551) | (0.073) | (0.108) | (0.086) | (0.080) | |
Controls | Y | Y | Y | Y | Y | Y | Y |
Time fixed effect | Y | Y | Y | Y | Y | Y | Y |
City fixed effect | Y | Y | Y | Y | Y | Y | Y |
N | 2800 | 2800 | 2800 | 2161 | 639 | 1533 | 1267 |
R2 | 0.2536 | 0.0029 | 0.0424 | 0.3391 | 0.4727 | 0.2714 | 0.4477 |
SCP | 7.1487 *** | 0.3787 * | 3.6387 *** | −0.1774 ** | −0.3146 *** | −0.1862 ** | −0.2164 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Huang, H.; Ruan, J.; Wang, W. Pollution Reduction, Informatization and Sustainable Urban Development—Evidence from the Smart City Projects in China. Sustainability 2023, 15, 10030. https://doi.org/10.3390/su151310030
Hu X, Huang H, Ruan J, Wang W. Pollution Reduction, Informatization and Sustainable Urban Development—Evidence from the Smart City Projects in China. Sustainability. 2023; 15(13):10030. https://doi.org/10.3390/su151310030
Chicago/Turabian StyleHu, Xiaoya, Huimin Huang, Jun Ruan, and Weijia Wang. 2023. "Pollution Reduction, Informatization and Sustainable Urban Development—Evidence from the Smart City Projects in China" Sustainability 15, no. 13: 10030. https://doi.org/10.3390/su151310030
APA StyleHu, X., Huang, H., Ruan, J., & Wang, W. (2023). Pollution Reduction, Informatization and Sustainable Urban Development—Evidence from the Smart City Projects in China. Sustainability, 15(13), 10030. https://doi.org/10.3390/su151310030