Analysis of Settlement Space Environment along China’s Grand Canal Tianjin Section Based on Structural Equation Model—Case Study of 44 Typical Settlements
Abstract
:1. Introduction
2. Research Methods
2.1. Study Area
2.2. The Structural Equation Model
2.2.1. Connotation of the Structural Equation Model
2.2.2. Practical Application of the Structural Equation Model
2.3. Building of the Structural Equation Model of the Settlement Space Environment along Tianjin Section
2.3.1. The Principle of Data Collection
2.3.2. Data Sample Testing
2.3.3. Presupposition of the Factor of Investigation of the Settlement Space along the Canal
2.3.4. Relation Assumption of Investigation Factors of Settlement Space Environment along Tianjin Section
3. Results
3.1. Descriptive Analysis of the Basic Index of Settlement Space Environment Investigation along Tianjin Section
3.1.1. Basic Attributes of the Investigated Group
3.1.2. Characteristics Analysis of Investigation Factors of Settlement Space Environment along Tianjin Section
3.2. The Structural Equation Model Testing
3.2.1. Validity and Reliability Testing
3.2.2. Factor Test Analysis of the Structural Equation Model
3.2.3. Fitting Analysis of Structural Equation Model
3.3. Analysis of Structural Equation Model
3.3.1. Relationship of Measurement Expression of the Structural Equation Model
3.3.2. Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wei, Q. Negotiation of Social Values in the World Heritage Listing Process: A Case Study on the Beijing-Hangzhou Grand Canal. China. Archaeol. 2018, 14, 501–526. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.C.; Zhuang, J.Y. Multi-resources data-based environment assessment of the Grand Canal in Beijing with CEAI model. Procedia Environ. Sci. 2012, 13, 660–669. [Google Scholar] [CrossRef] [Green Version]
- Price, A.G. White Settlement in the Panama Canal Zone. Geogr. Rev. 1935, 25, 1–11. [Google Scholar] [CrossRef]
- Garciamayor, C.; Martínez, G.C. Poly-nuclear urban system, landscape identity and economic development: The Vega Baja of the Segura River (Alicante) case study. In Proceedings of the 24th ISUF 2017-City and Territory in the Globalization Age, Donostia-San Sebastián, Spain, 27–29 September 2017; Editorial Universitat Politècnica de València: València, Spain, 2017. [Google Scholar]
- Lavoie, C.; Sleipness, O.R. Fluid Memory: Collective Memory and the Mormon Canal System of Cache Valley, Utah. Landsc. J. 2018, 37, 79–99. [Google Scholar] [CrossRef]
- Biscaya, S.; Elkadi, H.A. smart ecological urban corridor for the Manchester Ship Canal. Cities 2021, 110, 103042. [Google Scholar] [CrossRef]
- Ruan, Y.S.; Wang, J.B. Jiangnan Canal Ancient Town-Chang ‘an Ancient Town National Historical and Cultural City Research Center Historical Block Research. City Plan. 2010, 34, 97–98. [Google Scholar]
- Li, C. The Laws of the Settlements’ Spatial Distribution along the Jing-Hang Grand Canal. Master’s Thesis, Tianjin University, Tianjin, China, 2007. [Google Scholar]
- Li, P. Protection Planning Study on the Settlement Heritage of The China Grand Canal. Master’s Thesis, Beijing Institute of Civil Engineering and Architecture, Beijing, China, 2012. [Google Scholar]
- Niu, H.C. Study of the Settlement Patten of Beijing-Hangzhou Grand Canal’s Tianjin Section Under the Influence of Multicultural Ecological Corridor. Ph.D. Thesis, Tianjin University, Tianjin, China, 2012. [Google Scholar]
- Liu, C.; Wang, S.S.; Li, J.Q.; Wu, W.H.; Li, H.Y. Research on Water Adaptive Spatial Pattern of Traditional Settlement: A Case Study of Taierzhuang. Mod. Urban Res. 2017, 4, 75–81. [Google Scholar]
- Wu, X.; Wang, L.J.; Ling, J.; Qiang, H.H.; Ning, Y.X. A Comprehensive Analysis on The Ancient Towns Along The Grand Canal (Jiangsu Section): A Case Study Of Historic And Cultural Towns In Jiangsu. City Plan. Rev. 2019, 43, 93–106. [Google Scholar]
- Rong, Q.; Wang, J. Interpreting heritage canals from the perspective of historical events: A case study of the Hangzhou section of the Grand Canal, China. J. Asian Archit. Build. Eng. 2021, 20, 260–271. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Sun, Z. Spatiotemporal variations of land urbanization and socioeconomic benefits in a typical sample zone: A case study of the Beijing-Hangzhou Grand Canal. Appl. Geogr. 2020, 117, 102187. [Google Scholar] [CrossRef]
- Xu, Y.; Rollo, J.; Jones, D.S.; Esteban, Y.; Tong, H.; Mu, Q. Towards Sustainable Heritage Tourism: A Space Syntax-Based Analysis Method to Improve Tourists’ Spatial Cognition in Chinese Historic Districts. Buildings 2020, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Wang, J. Assessing Linear Urban Landscape from dynamic visual perception based on urban morphology. Front. Archit. Res. 2021, 10, 202–219. [Google Scholar] [CrossRef]
- Cheng, Z.F.; Tang, S.Y.; Hua, H.L. A Study of Cognition and Identification of the Grand Canal Culture from the Perspective of Traditional Village Residents in Beijing: The Cases of Three Traditional Villages in Tongzhou. J. Beijing Union Univ. (Humanit. Soc. Sci.) 2018, 16, 36–46. [Google Scholar]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, R.P.; Ho, M.H. Principles and practice in reporting structural equation analyses. Psychol Methods 2002, 7, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Weston, R.; Gore, P.A. A Brief Guide to Structural Equation Modeling. The Counseling Psychologist 2006, 34, 719–751. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Yi, Y. Specification, evaluation, and interpretation of structural equation models. J. Acad. Mark. Sci. 2012, 40, 8–34. [Google Scholar] [CrossRef]
- Schreiber, J.B.; Nora, A.; Stage, F.K.; Barlow, E.A.; King, J. Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. J. Educ. Res. 2006, 99, 323–338. [Google Scholar] [CrossRef]
- Barrett, P. Structural equation modelling: Adjudging model fit. Personal. Individ. Differ. 2007, 42, 815–824. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Xin, S.B.; Chen, Y.; Zhang, C. Review on Research and Application of Structural Equation Model. J. Ind. Technol. Econ. 2014, 33, 61–71. [Google Scholar]
- Zhu, A.W.; Qu, G.J.; Gao, Y.N.; Wei, Z.S. A Survey of the Modifying Techniques of Structure Dynamic Models. Adv. Mech. 2002, 32, 337–348. [Google Scholar]
- Wen, Z.L.; Hau, K.T.; Herbert, W.M. Structural Equation Model Testing: Cut off Criteria for goodness of Fit Indices and Chi-square Test. Acta Psychol. Sin. 2004, 36, 186–194. [Google Scholar]
- Liu, J.; Fu, P.P. Structural equation models apply trap analysis. Appl. Stat. Manag. 2007, 27, 268–272. [Google Scholar]
- Albacete-Sáez, C.A.; Fuentes-Fuentes, M.M.; Lloréns-Montes, F.J. Service quality measurement in rural accommodation. Ann. Tour. Res. 2007, 34, 45–65. [Google Scholar] [CrossRef]
- Auh, S.; Cook, C.C. Quality of Community Life among Rural Residents: An Integrated Model. Soc. Indic. Res. 2009, 94, 377–389. [Google Scholar] [CrossRef]
- Rashidpour, L.; Hosseini, S.J.F.; Chizari, M.; Mirdamadi, S.M. A community-based management model for the implementation sustainable development in rural areas of Iran. Afr. J. Agric. Res. 2011, 6, 84–88. [Google Scholar]
- Martinovska, S.A.; Kotevska, A.; Bogdanov, N.; Nikolić, A. How do farmers respond to rural development policy challenges? Evidence from Macedonia, Serbia and Bosnia and Herzegovina. Land Use Policy 2016, 59, 71–83. [Google Scholar] [CrossRef]
- Bunkus, R.; Soliev, I.; Theesfeld, I. Density of resident farmers and rural inhabitants’ relationship to agriculture: Operationalizing complex social interactions with a structural equation model. Agric. Hum. Values 2019, 37, 47–63. [Google Scholar] [CrossRef]
- Leković, K.; Tomić, S.; Marić, D.; Ćurčić, N.V. Cognitive Component of the Image of a Rural Tourism Destination as a Sustainable Development Potential. Sustainability 2020, 12, 9413. [Google Scholar] [CrossRef]
- Hou, J.T.; Wen, Z.L.; Cheng, Z.J.; Zhang, L. thematic discussion. In Structural Equation Model and Its Applications; Educational Science Publishing House: Beijing, China, 2004; Volume 7, pp. 125–132. [Google Scholar]
- Huang, J.C.; Lin, H.X.; Qi, X.X. A literature review on optimization of spatial development pattern based on ecological-production-living space. Progr.Geograp. 2017, 36, 378–391. [Google Scholar]
- Tian, F.; Li, M.; Han, X.; Liu, H.; Mo, B. A Production–Living–Ecological Space Model for Land-Use Optimization: A case study of the core Tumen River region in China. Ecol. Model. 2020, 437, 109310. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Wang, G.W.; Jia, L.Q.; Gao, H.G. Classification of urban and rural land use and its application in ”multi-plan integrated”. Plan. Plan. 2017, 33, 41–45. [Google Scholar]
Item | Frequency | Percentage | Cumulative Percentage |
---|---|---|---|
Null | 196 | 18.97% | 18.97% |
Valid | 837 | 81.03% | 100.00% |
Total | 1033 | 100.0% |
Item | Option | Frequency | Percentage (%) | Item | Option | Frequency | Percentage (%) |
---|---|---|---|---|---|---|---|
Gender | Man | 431 | 51.49 | Domicile place | Local | 667 | 79.69 |
Female | 406 | 48.51 | Not local | 170 | 20.31 | ||
Age group | Under 18 | 49 | 5.85 | Duration of residence | Within 1 year | 51 | 6.09 |
18–25 | 75 | 8.96 | 1–3 years | 88 | 10.51 | ||
26–30 | 79 | 9.44 | 3 to 10 years | 154 | 18.40 | ||
31–40 | 133 | 15.89 | Over 10 years | 544 | 64.99 | ||
41–50 | 195 | 23.30 | Resident household size | Singlehood | 55 | 6.57 | |
51–60 | 163 | 19.47 | 2 people | 106 | 12.66 | ||
Over 60 | 143 | 17.08 | 3 people | 233 | 27.84 | ||
Residence location | Wuqing District | 241 | 28.79 | 4 people | 232 | 27.72 | |
Beichen District | 174 | 20.79 | Over 5 people | 211 | 25.21 | ||
Xiqing District | 158 | 18.88 | Occupation | Government institution employee | 54 | 6.45 | |
Jinghai district | 264 | 31.54 | Company employee | 85 | 10.16 | ||
Workplace | Near the location | 419 | 50.06 | Worker | 121 | 14.46 | |
Tianjin downtown | 107 | 12.78 | Individual private | 119 | 14.22 | ||
Non-local town | 65 | 7.77 | Farmer | 232 | 27.72 | ||
No work | 246 | 29.39 | Student | 75 | 8.96 | ||
Unemployed | 151 | 18.04 |
Cross Summary Table | |||||
---|---|---|---|---|---|
Item | Residence Location (%) | Summary (n = 837) | |||
Wuqing District (n = 241) | Beichen District (n = 174) | Xiqing District (n = 158) | Jinghai District (n = 264) | ||
Tilling land | 73 (30.29) | 30 (17.24) | 31 (19.62) | 110 (41.67) | 244 (29.15) |
Animal husbandry | 36 (14.94) | 23 (13.22) | 11 (6.96) | 46 (17.42) | 116 (13.86) |
Part-time job | 74 (30.71) | 57 (32.76) | 47 (29.75) | 83 (31.44) | 261 (31.18) |
Staying at home (taking care of children and the elderly) | 83 (34.44) | 86 (49.43) | 61 (38.61) | 98 (37.12) | 328 (39.19) |
School | 23 (9.54) | 15 (8.62) | 11 (6.96) | 34 (12.88) | 83 (9.92) |
Migrant work | 44 (18.26) | 13 (7.47) | 17 (10.76) | 14 (5.30) | 88 (10.51) |
Cross Summary Table | |||||
---|---|---|---|---|---|
Item | Residence Location (%) | Summary (n = 837) | |||
Wuqing District (n = 241) | Beichen District (n = 174) | Xiqing District (n = 158) | Jinghai District (n = 264) | ||
Surfing online or watching TV | 97 (40.25) | 80 (45.98) | 43 (27.22) | 110 (41.67) | 33 (39.43) |
Reading books, newspapers, etc. | 76 (31.54) | 60 (34.48) | 38 (24.05) | 59 (22.35) | 23 (27.84) |
Exercising outside | 109 (45.23) | 67 (38.51) | 43 (27.22) | 89 (33.71) | 30 (36.80) |
Chatting outside | 104 (43.15) | 87 (50.00) | 57 (36.08) | 82 (31.06) | 33 (39.43) |
Playing cards | 43 (17.84) | 48 (27.59) | 28 (17.72) | 63 (23.86) | 18 (21.74) |
Go out rarely | 45 (18.67) | 21 (12.07) | 21 (13.29) | 71 (26.89) | 15 (18.88) |
Other | 17 (7.05) | 5 (2.87) | 20 (12.66) | 36 (13.64) | 78 (9.32) |
Basic Indicators | ||||||
---|---|---|---|---|---|---|
Name | Sample Size | Minimum | Maximum | Average | Standard Deviation | Median |
A1 Residential building space | 837 | 1.000 | 5.000 | 3.026 | 1.163 | 3.000 |
A2 Public activity space | 837 | 1.000 | 5.000 | 3.404 | 1.096 | 4.000 |
A3 Commercial service space | 837 | 1.000 | 5.000 | 3.276 | 1.062 | 3.000 |
A4 Cultural service space | 837 | 1.000 | 5.000 | 3.167 | 1.103 | 3.000 |
A5 Education service space | 837 | 1.000 | 5.000 | 3.223 | 1.087 | 3.000 |
A6 Medical service space | 837 | 1.000 | 5.000 | 3.188 | 0.994 | 3.000 |
A7 Canal system space | 837 | 1.000 | 5.000 | 3.165 | 1.134 | 3.000 |
A8 Green ecological space | 837 | 1.000 | 5.000 | 3.363 | 1.088 | 3.000 |
B1 Industrial production space | 837 | 1.000 | 5.000 | 2.708 | 1.119 | 3.000 |
B2 Agricultural production space | 837 | 1.000 | 5.000 | 2.903 | 1.211 | 3.000 |
B3 The situation of working out of the village | 837 | 1.000 | 5.000 | 2.274 | 1.095 | 2.000 |
C1 Traffic service space | 837 | 1.000 | 5.000 | 3.452 | 1.066 | 4.000 |
C2 Traffic congestion | 837 | 1.000 | 5.000 | 3.860 | 1.011 | 4.000 |
D1 Historic space | 837 | 1.000 | 5.000 | 2.973 | 1.064 | 3.000 |
D2 Historical and cultural cognition | 837 | 1.000 | 5.000 | 2.912 | 1.130 | 3.000 |
Number of Terms | 15 |
---|---|
Cronbach α coefficient | 0.842 |
KMO value | 0.885 |
Bartlett spherical value | 4138.326 |
df | 105 |
p-value | 0.000 |
Table of Variance Interpretation Frequency | |||||||||
---|---|---|---|---|---|---|---|---|---|
Factor No. | Characteristic Root | Variance Interpretation Frequency before Rotation | Variance Interpretation Frequency after Rotation | ||||||
Characteristic Root | Variance Interpretation Frequency % | Accumulation % | Characteristic Root | Variance Interpretation Frequency% | Accumulation % | Characteristic Root | Interpretation Frequency % | Accumulation % | |
1 | 5.230 | 34.870 | 34.870 | 5.230 | 34.870 | 34.870 | 4.352 | 29.014 | 29.014 |
2 | 1.587 | 10.582 | 45.452 | 1.587 | 10.582 | 45.452 | 1.645 | 10.965 | 39.979 |
3 | 1.226 | 8.175 | 53.626 | 1.226 | 8.175 | 53.626 | 1.617 | 10.780 | 50.759 |
4 | 1.029 | 6.861 | 60.487 | 1.029 | 6.861 | 60.487 | 1.459 | 9.728 | 60.487 |
5 | 0.778 | 5.188 | 65.675 | - | - | - | - | - | - |
6 | 0.767 | 5.116 | 70.791 | - | - | - | - | - | - |
7 | 0.693 | 4.620 | 75.411 | - | - | - | - | - | - |
8 | 0.616 | 4.107 | 79.519 | - | - | - | - | - | - |
9 | 0.605 | 4.035 | 83.554 | - | - | - | - | - | - |
10 | 0.525 | 3.498 | 87.052 | - | - | - | - | - | - |
11 | 0.493 | 3.284 | 90.336 | - | - | - | - | - | - |
12 | 0.462 | 3.081 | 93.417 | - | - | - | - | - | - |
13 | 0.361 | 2.404 | 95.821 | - | - | - | - | - | - |
14 | 0.319 | 2.128 | 97.949 | - | - | - | - | - | - |
15 | 0.308 | 2.051 | 100.000 | - | - | - | - | - | - |
Name | Factor Load Coefficient | Common Degrees Communality | |||
---|---|---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | Factor 4 | ||
A1 Residential building space | 0.804 | 0.076 | −0.013 | 0.058 | 0.655 |
A2 Public activity space | 0.763 | 0.075 | 0.109 | 0.082 | 0.606 |
A3 Commercial service space | 0.734 | 0.072 | 0.254 | 0.054 | 0.611 |
A4 Cultural service space | 0.800 | 0.053 | 0.018 | 0.090 | 0.651 |
A5 Education service space | 0.617 | 0.087 | 0.279 | 0.318 | 0.567 |
A6 Medical service space | 0.428 | 0.062 | 0.364 | 0.341 | 0.435 |
A7 Canal system space | 0.799 | 0.055 | 0.121 | 0.083 | 0.663 |
A8 Greening ecological space | 0.579 | 0.013 | 0.129 | 0.291 | 0.436 |
B1 Industrial production space | 0.060 | 0.794 | 0.077 | 0.137 | 0.659 |
B2 Agricultural production space | 0.057 | 0.810 | 0.081 | −0.249 | 0.728 |
B3 The situation of working out of the village | 0.128 | 0.565 | −0.247 | 0.325 | 0.503 |
C1 Traffic service space | 0.431 | 0.025 | 0.700 | 0.052 | 0.679 |
C2 Traffic congestion | 0.032 | −0.016 | 0.836 | 0.108 | 0.712 |
D1 Historic space | 0.441 | 0.062 | −0.037 | 0.540 | 0.492 |
D2 Historical and cultural cognition | 0.064 | 0.018 | 0.187 | 0.798 | 0.676 |
Index | Fitting the Standard | Simulate the Fitting Values | Index | Fitting the Standard | Simulate the Fitting Values |
---|---|---|---|---|---|
CMIN/DF | 1 < CMIN/DF < 3 | 2.817 | TLI | >0.9 | 0.969 |
RMSEA | <0.05 (adaptation is good) | 0.042 | CFI | >0.9 | 0.980 |
<0.08 (adaptation is reasonable) | PGFI | >0.5 | 0.545 | ||
IFI | IFI > 0.9 | 0.980 | PNFI | >0.5 | 0.619 |
Measure Expression Relation Summary Table | |||||||
---|---|---|---|---|---|---|---|
X | → | Y | Non-Standardized Load Factor | SE | z | p | Normalized Load Factor |
A1 Residential building space | → | Factor 1 | 1.000 | - | - | - | 0.742 |
A2 Public activity space | → | Factor 1 | 0.989 | 0.045 | 21.818 | 0.000 | 0.732 |
A3 Commercial service space | → | Factor 1 | 1.007 | 0.045 | 22.174 | 0.000 | 0.746 |
A4 Cultural service space | → | Factor 1 | 1.034 | 0.038 | 27.504 | 0.000 | 0.766 |
A5 Education service space | → | Factor 1 | 1.031 | 0.047 | 21.961 | 0.000 | 0.764 |
A6 Medical service space | → | Factor 1 | 0.823 | 0.046 | 17.923 | 0.000 | 0.610 |
A7 Canal system space | → | Factor 1 | 1.094 | 0.042 | 25.983 | 0.000 | 0.811 |
A8 Greening ecological space | → | Factor 1 | 0.862 | 0.045 | 19.243 | 0.000 | 0.638 |
B1 Industrial production space | → | Factor 2 | 1.000 | - | - | - | 0.730 |
B2 Agricultural production space | → | Factor 2 | 0.841 | 0.078 | 10.725 | 0.000 | 0.613 |
B3 The situation of working out of the village | → | Factor 2 | 0.622 | 0.063 | 9.879 | 0.000 | 0.454 |
C1 Traffic service space | → | Factor 3 | 1.000 | - | - | - | 0.958 |
C2 Traffic congestion | → | Factor 3 | 0.501 | 0.049 | 10.322 | 0.000 | 0.480 |
D1 Historic space | → | Factor 4 | 1.000 | - | - | - | 0.665 |
D2 Historical and cultural cognition | → | Factor 4 | 0.636 | 0.061 | 10.343 | 0.000 | 0.424 |
Model Regression Coefficient Summary Table | |||||||
---|---|---|---|---|---|---|---|
X | → | Y | The Non-Normalized Path Coefficient | SE | z | p | Normalized Path Coefficient |
Factor 1 | → | Factor 2 | 0.339 | 0.041 | 8.212 | 0.000 | 0.344 |
Factor 1 | → | Factor 3 | 0.701 | 0.062 | 11.312 | 0.000 | 0.543 |
Factor 3 | → | Factor 1 | 0.101 | 0.042 | 2.413 | 0.016 | 0.131 |
Factor 4 | → | Factor 1 | 0.853 | 0.092 | 9.247 | 0.000 | 0.765 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Yan, J.; Huang, M.; Bian, G.; Du, Y. Analysis of Settlement Space Environment along China’s Grand Canal Tianjin Section Based on Structural Equation Model—Case Study of 44 Typical Settlements. Sustainability 2022, 14, 5369. https://doi.org/10.3390/su14095369
Zhao Y, Yan J, Huang M, Bian G, Du Y. Analysis of Settlement Space Environment along China’s Grand Canal Tianjin Section Based on Structural Equation Model—Case Study of 44 Typical Settlements. Sustainability. 2022; 14(9):5369. https://doi.org/10.3390/su14095369
Chicago/Turabian StyleZhao, Yan, Jianwei Yan, Mengshi Huang, Guangmeng Bian, and Yizhao Du. 2022. "Analysis of Settlement Space Environment along China’s Grand Canal Tianjin Section Based on Structural Equation Model—Case Study of 44 Typical Settlements" Sustainability 14, no. 9: 5369. https://doi.org/10.3390/su14095369