Analysis of Impact Tendency and Sensitivity of Fractured Rock with Different Crack Arrest Measures
Abstract
1. Introduction
2. Materials and Methods
3. Experimental Results and Discussion
3.1. Mechanical Characteristics
3.2. Fracture Propagation
3.3. Failure Characteristics
3.4. Impact Energy Index
3.4.1. Pre-Peak Energy and Post-Peak Energy
3.4.2. Impact Energy Index
4. Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.; Ahmed, N.; Khalid, P.; Badar, M.A.; Akram, S.; Hussain, M.; Anwar, M.A.; Mahmood, A.; Ali, S.; Rehman, A.U. Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics. Geomech. Eng. 2019, 17, 343–353. [Google Scholar] [CrossRef]
- Wang, J.; Ning, J.G.; Qiu, P.Q.; Yang, S.; Shang, H.F. Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study. Geomech. Eng. 2019, 17, 375–383. [Google Scholar] [CrossRef]
- Du, R.; Pei, X.; Jia, J.; Zhang, X.; Zhang, G. A novel observation method for determining the crack stress thresholds of rock based on Hooke’s law. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 3050–3062. [Google Scholar] [CrossRef]
- Li, T.; Zhang, S.B.; Chen, G.B.; Qin, Z.C.; Li, Q.H. Study on energy dissipation and damage characteristic of coal-rock structural body under cyclic loading. J. Taiyuan Univ. Technol. 2022, 53, 649–659. [Google Scholar] [CrossRef]
- Xin, Z.H.; Moon, J.H.; Kim, L.S.; Kim, K.B.; Kim, Y.U. Effect of arbitrarily manipulated gap-graded granular particles on reinforcing foundation soil. Geomech. Eng. 2019, 17, 439–444. [Google Scholar] [CrossRef]
- Cao, K.; Khan, N.M.; Liu, W.; Hussain, S.; Liu, B.W. Prediction Model of Dilatancy Stress Based on Brittle Rock: A Case Study of Sandstone. Arab. J. Sci. Eng. 2020, 46, 2165–2176. [Google Scholar] [CrossRef]
- Wang, H.W.; Wu, Z.M.; Wang, Y.J.; Yu, R.C. Investigation on crack propagation perpendicular to mortar–rock interface: Experimental and numerical. Int. J. Fract. 2020, 226, 45–69. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Wang, S.H.; Wang, C.G.; Wang, P.Y. A study on rock mass crack propagation and coalescence simulation based on improved numerical manifold method (NMM). Geomech. Geophys. Geo-Energy Geo-Resour. 2020, 7, 5. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, X.M.; Zhou, X.S.; Ou, X.F. Experimental Study on the Compression Behavior of Grouted Rock with Bi-Directional Penetrating Crack. Appl. Sci. 2021, 11, 537. [Google Scholar] [CrossRef]
- Aliabadian, Z.; Zhao, G.F.; Russell, A.R. Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test. Int. J. Rock Mech. Min. Sci. 2019, 122, 104073. [Google Scholar] [CrossRef]
- Spetz, A.; Denzer, R.; Tudisco, E.; Dahlblom, O. Phase-field fracture modelling of crack nucleation and propagation in porous rock. Int. J. Fract. 2020, 224, 31–46. [Google Scholar] [CrossRef]
- Taheri, A.; Zhang, Y.; Munoz, H. Performance of rock crack stress thresholds determination criteria and investigating strength and confining pressure effects. Constr. Build. Mater. 2020, 243, 118263. [Google Scholar] [CrossRef]
- Krykovskyi, O.; Krykovska, V.; Skipochka, S. Interaction of rock-bolt supports while weak rock reinforcing by means of injection rock bolts. Min. Miner. Depos. 2021, 15, 8–14. [Google Scholar] [CrossRef]
- Li, H.B.; Zhao, J.; Li, T.J. Micromechanical modelling of the mechanical properties of a granite under dynamic uniaxial compressive loads. Int. J. Rock Mech. Min. Sci. 2000, 37, 923–935. [Google Scholar] [CrossRef]
- Ghasemi, S.; Khamehchiyan, M.; Taheri, A.; Nikudel, M.R.; Zalooli, A. Crack Evolution in Damage Stress Thresholds in Different Minerals of Granite Rock. Rock Mech. Rock Eng. 2020, 53, 1163–1178. [Google Scholar] [CrossRef]
- Xiao, P.; Li, D.Y.; Zhao, G.Y.; Zhu, Q.Y.; Liu, H.X.; Zhang, C.S. Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads. J. Cent. South Univ. 2020, 2, 2945–2958. [Google Scholar] [CrossRef]
- Yan, Z.; Dai, F.; Liu, Y.; Du, H.B. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading. Bull. Eng. Geol. Environ. 2020, 79, 5535–5552. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Li, M.; Luan, H.J.; Shi, Y.C.; Zhang, S.H.; Yan, P.; Li, B.C. Discrete Element Simulation of the Macro-Meso Mechanical Behaviors of Gas-Hydrate-Bearing Sediments under Dynamic Loading. J. Mar. Sci. Eng. 2022, 10, 1042. [Google Scholar] [CrossRef]
- Xia, N.; Liang, R.Y.; Payer, J.; Patnaik, A. Probabilistic modelling of the bond deterioration of fully-grouted rock bolts subject to spatiotemporally stochastic corrosion. Struct. Infrastruct. Eng. 2013, 9, 1161–1176. [Google Scholar] [CrossRef]
- Makovetskiy, O.A. Application of Jet Grouting™ for Installation of Substructures of Estates. Procedia Eng. 2016, 150, 2228–2231. [Google Scholar] [CrossRef][Green Version]
- Shrivastava, N.; Zen, K.; Shukla, S.K. Modeling of Compaction Grouting Technique with Development of Cylindrical Cavity Expansion Problem in a Finite Medium. Int. J. Geosynth. Ground Eng. 2017, 40, 40. [Google Scholar] [CrossRef]
- Shrivastava, N.; Zen, K. Finite Element Modeling of Compaction Grouting on its Densification and Confining Aspects. Geotech. Geol. Eng. 2018, 36, 2365–2378. [Google Scholar] [CrossRef]
- Zhao, J.J.; Yan, H.Y.; Yang, C.X.; Bu, F.; Li, T. Laboratory research on anchorage effect of fractured rock mass under freezing and thawing. J. Eng. Geol. 2018, 26, 1257–1264. [Google Scholar] [CrossRef]
- Brown, D.R.; Warner, J. Compaction Grouting. ASCE Soil Mech. Found. Div. J. 1973, 99, 589–601. [Google Scholar] [CrossRef]
- Kelesh, A.M.; Mossaad, M.E.; Basha, I.M. Model of Compaction Grouting. J. Geotech. Geoenvironmental Eng. 2001, 127, 955–964. [Google Scholar] [CrossRef]
- Graf, E.D. Compaction Grouting Technique and Observations. ASCE J. Soil Mech. Found. 1969, 95, 1151–1158. [Google Scholar] [CrossRef]
- Stille, H.; Holmberg, M.; Nord, G. Support of weak rock with grouted bolts and shotcrete. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1989, 26, 99–113. [Google Scholar] [CrossRef]
- Indraratna, B.; Kaiser, P.K. Analytical model for the design of grouted rock bolts. Int. J. Numer. Anal. Methods Geomech. 1990, 14, 227–251. [Google Scholar] [CrossRef]
- Li, S.C.; Zhang, W.J.; Zhang, Q.S.; Zhang, X.; Che, Z.Y. Research on advantage-fracture grouting mechanism and controlled grouting method in water-rich fault zone. Rock Soil Mech. 2014, 35, 9. [Google Scholar] [CrossRef]
- Li, C. Analytical models for rock bolts. Int. J. Rock Mech. Min. Sci. 1999, 36, 1013–1029. [Google Scholar] [CrossRef]
- Grasselli, G. 3D Behavior of bolted rock joints: Experimental and numerical study. Int. J. Rock Mech. Min. Sci. 2005, 42, 13–24. [Google Scholar] [CrossRef]
- Chen, L.; Tan, Y.L.; Zang, C.W. Test study of mechanical properties and failure characteristics of anchored rock. Rock Soil Mech. 2014, 2, 413–422. [Google Scholar] [CrossRef]
- Li, X.; Aziz, N.; Mirzaghorbanali, A. Behavior of fiber glass bolts, rock bolts and cable bolts in shear. Rock Mech. Rock Eng. 2016, 49, 2723–2735. [Google Scholar] [CrossRef]
- Wu, C.; Gong, F.; Luo, Y. A new quantitative method to identify the crack damage stress of rock using AE detection parameters. Bull. Eng. Geol. Environ. 2020, 80, 519–531. [Google Scholar] [CrossRef]
- Spang, K.; Egger, P. Action of fully-grouted bolts in jointed rock and factors of influence. Rock Mech. Rock Eng. 1990, 23, 201–229. [Google Scholar] [CrossRef]
- Liu, W.R.; Wang, X.; Li, C.M. Numerical Study of Damage Evolution Law of Coal Mine Roadway by Particle Flow Code (PFC) Model. Geotech. Geol. Eng. 2019, 37, 2883–2891. [Google Scholar] [CrossRef]
- Dehghan, M.; Mohammadi, V. The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local meshless methods. Comput. Methods Appl. Mech. Eng. 2016, 298, 453–484. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Zhang, S.H.; Luan, H.J.; Wang, C.S.; Wang, G.; Han, W. Numerical modelling of the performance of bolted rough joint subjected to shear load. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 140. [Google Scholar] [CrossRef]
- Li, T.; Chen, G.B.; Li, Q.H. Experimental study on rock-coal-rock composite structure with different crack characteristics. Geomech. Eng. 2022, 29, 377–390. [Google Scholar] [CrossRef]
- Kim, A.R.; Cho, G.C.; Tran, A.T.P. Numerical modeling on the stability of slope with foundation during rainfall. Geomech. Eng. 2019, 17, 109–118. [Google Scholar] [CrossRef]
- Cheng, X.Z.; Luan, H.J.; Chen, L.J.; Jiang, Y.J.; Han, W. Numerical investigation on mechanical properties of inhomogeneous coal under uniaxial compression and the role of cleat distribution. Bull. Eng. Geol. Environ. 2021, 80, 7009–7027. [Google Scholar] [CrossRef]
- Skipochka, S.; Krukovskyi, O.; Palamarchuk, T.; Prokhorets, L. On the methodology for considering scale effect of rock strength. Min. Miner. Depos. 2020, 4, 2–30. [Google Scholar] [CrossRef]
- Filgueira, U.C.; Alejano, L.R.; Arzúa, J.; Ivars, D.M. Sensitivity Analysis of the Micro-Parameters Used in a PFC Analysis Towards the Mechanical Properties of Rocks. Procedia Eng. 2017, 191, 488–495. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Ma, B.; Chen, X.Z.; Chen, L.L. Study on Sensitivity Parameters Analysis of Grouting Reinforcement Underpassing Existing Subway Tunnel by Numerical Modeling. Adv. Civ. Eng. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Wang, C.S.; Jiang, Y.J.; Wang, G.; Luan, H.J.; Zhang, Y.C.; Zhang, S.H. Experimental investigation on the shear behavior of the bolt-grout interface under CNL and CNS conditions considering realistic bolt profiles. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 1–23. [Google Scholar] [CrossRef]
- Wang, C.S.; Liu, R.C.; Jiang, Y.J.; Wang, G.; Luan, H.J. Effect of shear-induced contact area and aperture variations on nonlinear flow behaviors in fractal rock fractures. J. Rock Mech. Geotech. Eng. 2022. [CrossRef]
- Chen, M.; Zang, C.W.; Ding, Z.W.; Zhou, G.L.; Jiang, B.Y.; Zhang, G.C.; Zhang, C.P. Effects of confining pressure on deformation failure behavior of jointed rock. J. Cent. South Univ. 2022, 29, 1−15. [Google Scholar] [CrossRef]
Micro Parameters | Grouting Materials | Rock |
---|---|---|
Particle density/(kg·m−3) | 3320 | 2350 |
Radius range/mm | 0.2–0.3 | 0.2~0.3 |
Friction coefficient | 0.45 | 0.18 |
Contact modulus/GPa | 18 | 7 |
Parallel bond modulus/GPa | 13 | 11 |
Parallel bond normal/tangential strength/MPa | 45 | 16 |
Parallel bond normal/tangential stiffness | 3.2 | 2.9 |
The parallel bond radius value | 1 | 1 |
Classification | I | II | III |
---|---|---|---|
Impact tendency | None | Weak | Strong |
Impact energy index | KE < 1.5 | 1.5 < KE < 5 | KE > 5 |
Parameter Classification | Important Parameter | Primary Parameter | Secondary Parameter | Negligible Parameter |
---|---|---|---|---|
Sensitive percentage γxi | [100%, 50%] | (50%, 25%] | (25%, 5%] | (5%, 0%] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xiao, F.; Li, T.; Zhang, B. Analysis of Impact Tendency and Sensitivity of Fractured Rock with Different Crack Arrest Measures. Sustainability 2022, 14, 13833. https://doi.org/10.3390/su142113833
Liu S, Xiao F, Li T, Zhang B. Analysis of Impact Tendency and Sensitivity of Fractured Rock with Different Crack Arrest Measures. Sustainability. 2022; 14(21):13833. https://doi.org/10.3390/su142113833
Chicago/Turabian StyleLiu, Shiming, Fukun Xiao, Tan Li, and Bo Zhang. 2022. "Analysis of Impact Tendency and Sensitivity of Fractured Rock with Different Crack Arrest Measures" Sustainability 14, no. 21: 13833. https://doi.org/10.3390/su142113833
APA StyleLiu, S., Xiao, F., Li, T., & Zhang, B. (2022). Analysis of Impact Tendency and Sensitivity of Fractured Rock with Different Crack Arrest Measures. Sustainability, 14(21), 13833. https://doi.org/10.3390/su142113833